

Detecting Health and Behavior Change by Analyzing Smart Home Sensor Data

Gina Sprint | <u>sprint@gonzaga.edu</u>

Association for Computing Machinery

Health and Behavior Monitoring

Age, injury, or health-related impairments can impact health Benefits of health and behavior monitoring

- Health insights
- Longitudinal tracking
- Aging in place

Preferably monitor 24/7 Objective data collection

CLINICAL STUDIES SUPPORT A RELATIONSHIP BETWEEN DAILY BEHAVIOR AND COGNITIVE AND PHYSICAL HEALTH

Technologies for Behavior Monitoring

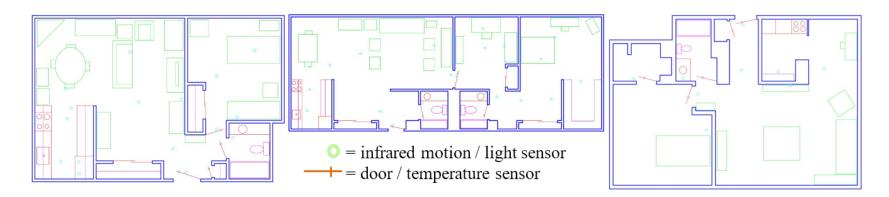
Ambient sensors (installed in the environment)

Wearable sensors (inertial, vital sign, etc.)

Smartphone/tablet apps

SELF-PERCEPTION OF BEHAVIOR OFTEN DOES NOT ALIGN WITH DIRECT MEASUREMENT

PAGE 3 | GRACE HOPPER CELEBRATION FOR WOMEN IN COMPUTING 2017 PRESENTED BY THE ANITA BORG INSTITUTE AND THE ASSOCIATION FOR COMPUTING MACHINERY



Smart Home Environments

Ambient sensors installed in the home

- Motion, door, temperature, etc.
- Fire event when state changes

WE COLLECTED DATA FROM SMART HOMES WITH OLDER ADULT RESIDENTS

Activity Recognition (AR)

CASAS-AR algorithm assigns activity labels

- Machine learning
- Cook, eat/drink, relax, sleep, enter/leave home, etc.

Timestamp/Identifier/Message	Sensor Location	Activity
2014-06-15 03:38:28.094897 M009 ON	BedroomMotion	Sleep
2014-06-15 03:38:29.213955 M009 OFF	BedroomMotion	Sleep
2014-06-15 03:38:17.814393 M015 ON	BathroomMotion	Bed-Toilet
2014-06-15 03:38:58.584179 M015 OFF	BathroomMotion	Bed-Toilet
2014-06-15 03:39:17.814393 M009 ON	BedroomMotion	Sleep

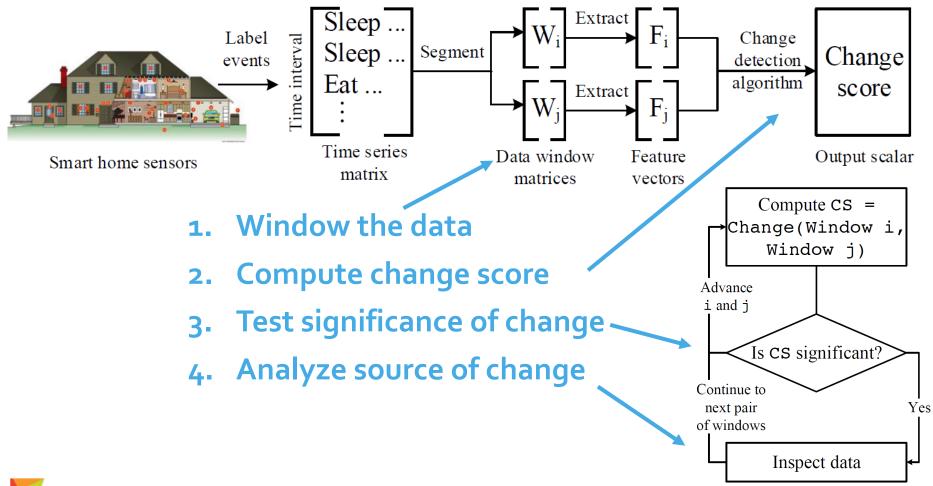
Tracking Behavior Changes

Analyze AR-labeled data to track resident behavior Behavior Change Detection (BCD) framework

- Input: AR-labeled data
- Output: Quantification of change
- Output: Explanation of change

Focus on indicators of health events

PAGE 6 | **GRACE HOPPER CELEBRATION FOR WOMEN IN COMPUTING 2017** PRESENTED BY THE ANITA BORG INSTITUTE AND THE ASSOCIATION FOR COMPUTING MACHINERY


Behavior Change Detection (BCD) Framework

PAGE 7 | **GRACE HOPPER CELEBRATION FOR WOMEN IN COMPUTING 2017** PRESENTED BY THE ANITA BORG INSTITUTE AND THE ASSOCIATION FOR COMPUTING MACHINERY

BCD Framework

PAGE 8 | GRACE HOPPER CELEBRATION FOR WOMEN IN COMPUTING 2017 PRESENTED BY THE ANITA BORG INSTITUTE AND THE ASSOCIATION FOR COMPUTING MACHINERY

¥GHC17

Change Detection Algorithm

A change detection algorithm

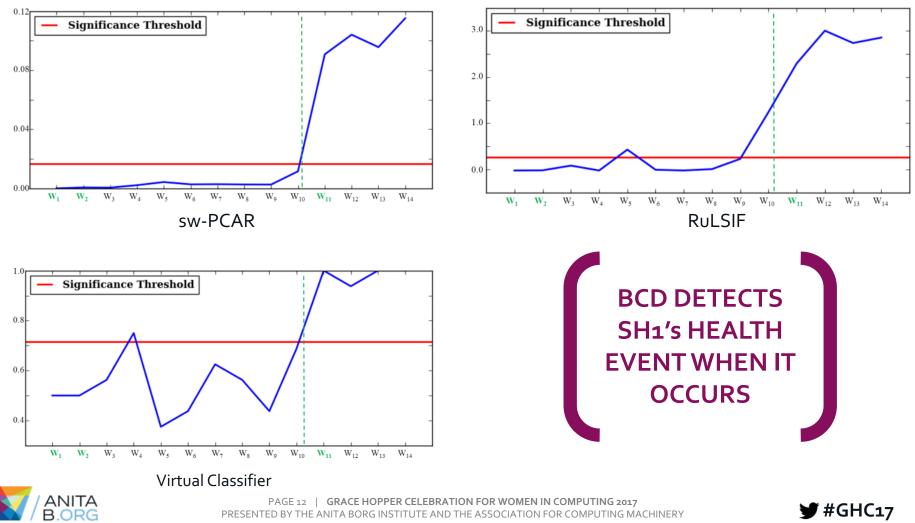
- Accepts two windows of data
- Quantifies the change
- double changeScore = computeChange(Window_i, Window_j)
 Different algorithms detect different change
- Virtual Classifier [Hido et al., 2008]
- RuLSIF [Liu et al, 2013]
- sw-PCAR [Sprint et al., 2016]

Focus on Virtual Classifier

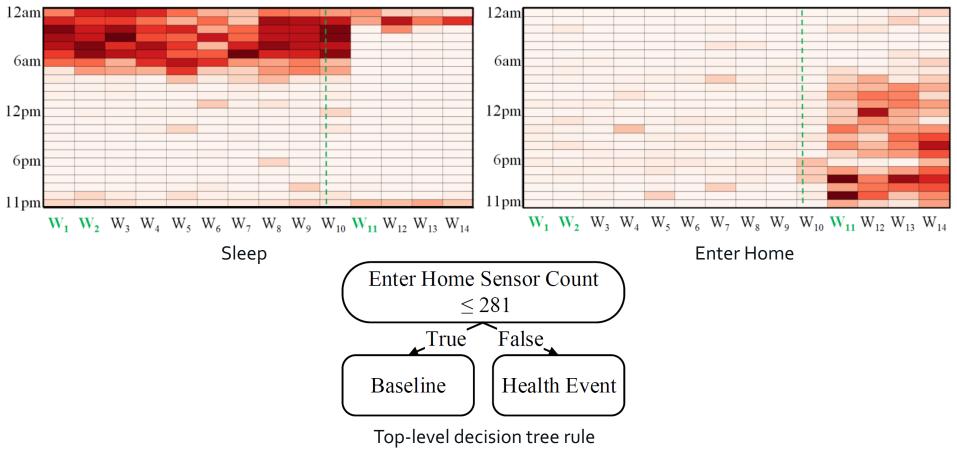
WE INVESTIGATED 3 DIFFERENT CHANGE SCORE ALGORITHMS

PAGE 10 | GRACE HOPPER CELEBRATION FOR WOMEN IN COMPUTING 2017 PRESENTED BY THE ANITA BORG INSTITUTE AND THE ASSOCIATION FOR COMPUTING MACHINERY

Case Studies

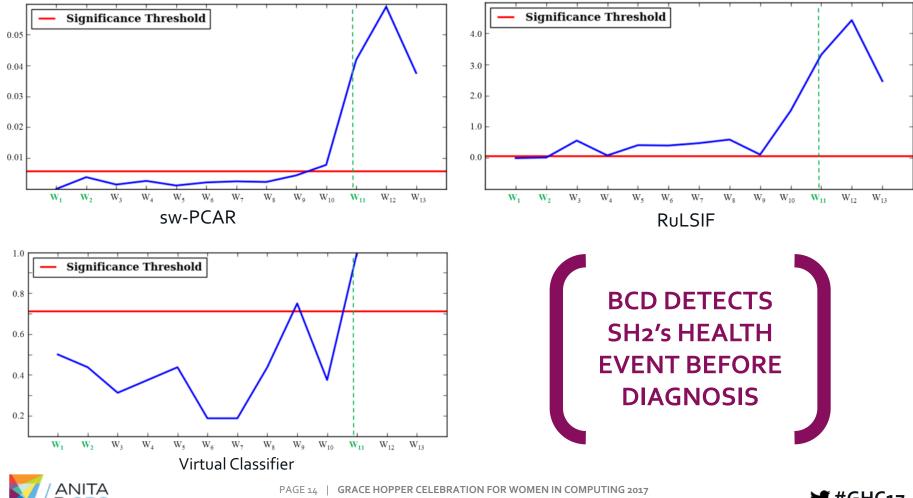

Smart home residents with health events

- SH1: 86 year old female
 - Diagnosed with lung cancer
 - Started radiation treatment during week 10
- SH2: 91 year old female
 - Diagnosed with insomnia during week 11

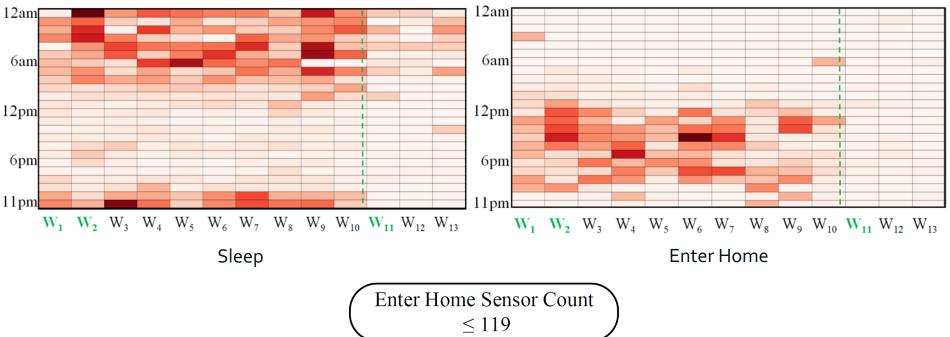


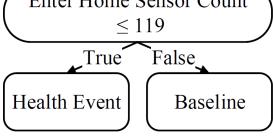
SH1 Health Event Results (started radiation treatment during week 10)

SH1 Explanation of Change (started radiation treatment during week 10)



PAGE 13 | GRACE HOPPER CELEBRATION FOR WOMEN IN COMPUTING 2017 PRESENTED BY THE ANITA BORG INSTITUTE AND THE ASSOCIATION FOR COMPUTING MACHINERY


SH2 Health Event Results (diagnosed with insomnia during week 11)



PRESENTED BY THE ANITA BORG INSTITUTE AND THE ASSOCIATION FOR COMPUTING MACHINERY

SH2 Explanation of Change (diagnosed with insomnia during week 11)

Top-level decision tree rule

PAGE 15 | GRACE HOPPER CELEBRATION FOR WOMEN IN COMPUTING 2017 PRESENTED BY THE ANITA BORG INSTITUTE AND THE ASSOCIATION FOR COMPUTING MACHINERY

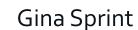
What's Next?

Impact

- Relationship between health and behavior
 - Over time
- Aging in place
- Motivation toward health goals

Future Work

- Different health events
- Vital sign data
- Interface caregivers



Thank You!

- **I**
- <u>sprint@gonzaga.edu</u>
- <u>http://cs.gonzaga.edu/faculty/sprint/</u>

Acknowledgments

- Co-authors: Diane Cook, Shelly Fritz, Maureen Schmitter-Edgecombe
- WSU CASAS-AR algorithm: [NC Krishnan and Diane Cook, 2014]

Related Publications

- G. Sprint, D. Cook, R. Fritz, and M. Schmitter-Edgecombe. <u>Using Smart Homes to</u> <u>Detect and Analyze Health Events</u>. IEEE Computer, 2016.
- G. Sprint and D. Cook. <u>Unsupervised Detection and Analysis of Changes in Everyday</u> <u>Physical Activity Data</u>. Journal of Biomedical Informatics, 2016.
- G. Sprint, D. Cook, R. Fritz, and M. Schmitter-Edgecombe. <u>Detecting Health</u> <u>Changes by Analyzing Smart Home Sensor Data</u>. IEEE SmartComp Conference, 2016

WASHINGTON STATE

JNIVERSITY

Thank you

FEEDBACK? RATE AND REVIEW THE SESSION ON OUR MOBILE APP

Download the GHC 17 app at http://bit.ly/ghc17app or search GHC 2017 in the app store

Association for Computing Machinery

Virtual Classifier

Train a binary decision tree classifier

- Extract features
- Label feature vectors in *Window_i* as positive class
- Label features vectors in *Window_i* as negative class
- Average K-fold cross validation accuracy

Investigate source of change

- Accuracy significant?
- Investigate decision tree

WE TRAIN DECISION TREES TO LEARN THE DIFFERENCES BETWEEN TWO WINDOWS

