ANITA BORG INSTITUTE GRACE HOPPER CELEBRATION OF WOMEN IN COMPUTING

2015

Wearable Sensor Data and Medical Records for Clinical Outcome Prediction

Gina Sprint, CS PhD Student Washington State University October 14th, 2015

Wearables for Rehabilitation

- Why technology for rehabilitation?
 - Fine-grained, objective data
- Why wearable sensors?

BORG INSTITUTE

ON OF WOMEN IN COMPUTING

- Portable, inexpensive, unobtrusive,
- Why ecological environments?
 - More representative of abilities
 - Resembles discharge environment

2015

BORG INSTITUTE

Ambulation Circuit (AC)

ANITA BORG INSTITUTE GRACE HOPPER CELEBRATION OF WOMEN IN COMPUTING

ANITA BORG INSTITUTE GRACEHOPPER CELEBRATION OF WOMEN IN COMPUTING

AC Study Participants

- N=20 (M=14, F=6)
- 71.55 ± 10.62 years of age
- Stroke, brain injury, debility, cardiac, etc.
- 2 Testing sessions
 - 1 Week apart

ANITA BORG INSTITUTE

CELEBRATION OF WOMEN IN COMPUTING

Data Processing

ANITA BORG INSTITUTE GRACE HOPPER CELEBRATION OF WOMEN IN COMPUTING

Clinical Outcome Prediction

2015

Functional Independence
Measure (FIM)

- Measured at admission and discharge
- 13 Motor tasks Motor
 - Transfers

ANITA BORG INSTITUTE

BRATION OF WOMEN IN COMPUTING

- Locomotion
- 5 Cognitive tasks
- Utilize additional patient medical records (N=4936) for training (NAC dataset)

Task Type	#	Task
	1	Eating
	2	Grooming
	3	Bathing
	4	Upper body dressing
	5	Lower body dressing
	6	Toileting
Motor	7	Bladder management
	8	Bowel management
	9	Bed to chair transfer
	10	Toilet transfer
	11	Shower transfer
	12	Locomotion (ambulatory or wheelchair level)
	13	Stairs
	14	Cognitive comprehension
	15	Expression
 Cognitive 	16	Social interaction
	17	Problem solving
	18	Memory

ANITA BORG INSTITUTE

Medical Record Features

- Patient characteristics
 - Age

ANITA BORG INSTITUTE

- Gender
- Rehabilitation impairment category (RIC)
- Comorbidity tier
- Case mix group (accounts for medical complications)
- Admission Functional Independence Measure (FIM)
 - Individual tasks

RATION OF WOMEN IN COMPUTING

- Motor aggregate score
- Cognitive aggregate score

AC Features

2015

Gait

ANITA BORG INSTITUTE

- Velocity, cadence, timing symmetry, smoothness, double support percent, etc.
- Variability
- Chair transfer
 - Root mean square (RMS) duration, range of motion, etc.
- Vehicle transfer

CELEBRATION OF WOMEN IN COMPUTING

 RMS, duration, peak angular velocity, etc.

AC Change Features

Percent change

$$- x_{\Delta\%} = \frac{x_{S2} - x_{S1}}{x_{S1}}$$

 Standardized mean difference effect size for repeated measures

$$- d_{RM} = \frac{\bar{X}_{post} - \bar{X}_{pre}}{S_D} [\text{Viechtbauer, 2007}] \\ - d_{RM} \pm CS * \hat{\sigma}_d^{2(L1)}, \hat{\sigma}_d^{2(L1)} = \sqrt{\frac{2(1-\hat{\rho})}{n} + \frac{d_{RM}^2}{2(n-1)}}$$

2015

[Wolff Smith and Beretvas, 2009]

GRACE HOPPER CELEBRATION OF WOMEN IN COMPUTING

Supervised Models

 Train prediction models M₁ (admission), M₂ (AC S1), and M₃ (AC S2)

- Linear SVM, linear regression, random forest w/100 trees
- Evaluation

CELEBRATION OF WOMEN IN COMPUTING

ANITA BORG INSTITUTE

Mean absolute error (MAE), root mean squared error (RMSE), normalized RMSE, and correlations

2015

Association for

Computing Machinery

Model Approaches

Discharge FIM Motor Prediction

		Linear SVM			Linear Regression			Random Forest		
	Model	RMSE	NRMSE	r	RMSE	NRMSE	r	RMSE	NRMSE	r
Mı	M ₁ (w/o NAC)	4.66	11.65%	0.89**	6.07	15.19%	0.87**	8.14	20.36%	0.61**
	\mathbf{M}_1	7.36	18.41%	0.82**	7.95	19.87%	0.80**	10.86	27.14%	0.73**
	M2	8.55	21.38%	0.60*	9.82	24.55%	0.55*	10.18	25.45%	0.25
Sanarata	M_3	5.54	13.86%	0.85**	5.43	13.57%	0.86**	10.70	26.76%	0.07
Sepurule	M_{avg}	5.54	13.86%	0.87**	5.27	13.18%	0.89**	8.04	20.09%	0.69**
	M_E	5.50	13.74%	0.84**	5.69	14.22%	0.84**	9.38	23.46%	0.44
	M_2	5.49	13.71%	0.85**	5.88	14.69%	0.85**	8.51	21.27%	0.59*
Cumulative	M_3	2.32	5.80%	0.97**†	2.60	6.50%	0.97**†	9.78	24.46%	0.31
eunnuunre	M_{avg}	4.00	10.01%	0.94**†	4.05	10.12%	0.94**†	7.38	18.46%	0.77**†
	$M_{\rm E}$	3.41	8.53%	0.95**†	2.90	7.26%	0.96**†	9.30	23.24%	0.45*

avg = average, E = ensemble, M = model, NAC = non-ambulatory circuit, NRMSE = normalized root mean square error, r = Pearson correlation coefficient, RMSE = root mean square error, SVM = support vector machine, * = p < 0.05, ** = p < 0.01, † = significantly (p < 0.05) improved results from M₁.

GRACE HOPPER CELEBRATION OF WOMEN IN COMPUTING

Discharge FIM Cognitive Prediction

		Linear SVM			Linear Regression			Random Forest		
	Model	RMSE	NRMSE	r	RMSE	NRMSE	r	RMSE	NRMSE	r
M ₁	M ₁ (w/o NAC)	2.42	20.19%	0.70**	2.50	20.86%	0.67**	2.61	21.72%	0.64**
	M1	2.34	19.49%	0.73**	2.56	21.30%	0.73**	2.36	19.69%	0.73**
	M ₂	3.10	25.82%	0.51*	5.50	45.81%	0.17	3.80	31.7%	-0.09
Separate	M3	3.74	31.17%	-0.34	3.61	30.11%	-0.23	4.15	34.57%	-0.12
Sepurate	Mavg	2.56	21.36%	0.68**	3.06	25.52%	0.45*	2.93	24.40%	0.52*
	M_E	2.66	22.14%	0.64**	3.09	25.77%	0.56*	2.87	RMSENRMSE r 2.6121.72%0.64**2.3619.69%0.73**3.8031.7%-0.094.1534.57%-0.122.9324.40%0.52*2.8723.92%0.53*3.7731.45%0.152.6121.72%0.64**2.4720.56%0.68**2.4620.52%0.68**	
	M ₂	3.44	28.69%	0.19	3.13	26.08%	0.37*	3.77	31.45%	0.15
Cumulative	M ₃	2.42	20.19%	0.70**	2.50	20.86%	0.67**	2.61	21.72%	0.64**
cumulante	Mavg	2.40	20.01%	0.73**	2.32	19.34%	0.74**	2.47	20.56%	0.68**
	M_E	2.71	22.59%	0.59*	1.48	12.36%	0.90**†	2.46	20.52%	0.68**

avg = average, E = ensemble, M = model, NAC = non-ambulatory circuit, NRMSE = normalized root mean square error, r = Pearson correlation coefficient, RMSE = root mean square error, SVM = support vector machine, * = p < 0.05, ** = p < 0.01, † = significantly (p < 0.05) improved results from M₁.

ANITA BORG INSTITUTE GRACE HOPPER CELEBRATION OF WOMEN IN COMPUTING

Individual FIM Tasks

Individual Patient Prediction

GRACE HOPPER

Clinical Utility of FIM Predictions

- 7 Physical therapists interviewed
- 7/7 are interested in using wearable technologies for their patients
- 6/7 said they would make use of FIM predictions for patients mid-stay
 - "It would be very useful, it could help with discharge planning if we needed to steer one way or another."

ANITA BORG INSTITUTE GRACE HOPPER CELEBRATION OF WOMEN IN COMPUTING

What's Next?

- Increase sample size
 - Enough participants \rightarrow condition-specific models
 - Investigate the effects of comorbidities
- Mobile app!

RATION OF WOMEN IN COMPUTING

ANITA BORG INSTITUTE

Online collection, processing, and prediction

Association for Computing Machinery

- Advanced machine learning techniques
- Adding sensor-based cognitive features

Thank You!

- Questions?
- Connect with me
 - Gina Sprint
 - Computer Science PhD Student
 - Washington State University
 - gsprint@eecs.wsu.edu
 - www.eecs.wsu.edu/~gsprint
- Related publications

- G. Sprint, D. Cook, D. Weeks, and V. Borisov. <u>Predicting Functional</u> <u>Independence Measure Scores During Rehabilitation with Wearable Inertial</u> <u>Sensors</u>. IEEE Access, 2015.
- G. Sprint, D. Cook, and D. Weeks. <u>Towards Automating Clinical Assessments:</u> <u>A Survey of the Timed Up and Go (TUG)</u>. IEEE Reviews in Biomedical Engineering, 2015.
- G. Sprint, V. Borisov, D. Cook, and D. Weeks. <u>Wearable Sensors in Ecological</u> <u>Rehabilitation Environments</u>. ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, 2014.

ANITA BORG INSTITUTE GRACE HOPPER CELEBRATION OF WOMEN IN COMPUTING

Got Feedback?

★ Rate and Review the session using the GHC Mobile App

To download visit www.gracehopper.org

