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ABSTRACT
A key advantage of scientific workflow systems over traditional
scripting approaches is their ability to automatically record data and
process dependencies introduced during workflow runs. This infor-
mation is often represented through provenance graphs, which can
be used by scientists to better understand, reproduce, and verify sci-
entific results. However, while most systems record and store data
and process dependencies, few provide easy-to-use and efficient ap-
proaches for accessing and querying provenance information. In-
stead, users formulate provenance graph queries directly against
physical data representations (e.g., relational, XML, or RDF), lead-
ing to queries that are difficult to express and expensive to evalu-
ate. We address these problems through a high-level query lan-
guage tailored for expressing provenance graph queries. The lan-
guage is based on a general model of provenance supporting sci-
entific workflows that process XML data and employ update se-
mantics. Query constructs are provided for querying both structure
and lineage information. Unlike other languages that return sets
of nodes as answers, our query language is closed, i.e., answers to
lineage queries are sets of lineage dependencies (edges) allowing
answers to be further queried. We provide a formal semantics for
the language and present novel techniques for efficiently evaluating
lineage queries. Experimental results on real and synthetic prove-
nance traces demonstrate that our lineage based optimizations out-
perform an in-memory and standard database implementation by
orders of magnitude. We also show that our strategies are feasi-
ble and can significantly reduce both provenance storage size and
query execution time when compared with standard approaches.

1. INTRODUCTION
Scientific results are often based on complex data analysis

pipelines that integrate multiple domain-specific applications [14].
Automating the use of these applications is frequently performed
using traditional scripting languages, and more recently, through
scientific workflow systems (e.g., [20, 27, 9]). An advantage of sci-
entific workflow systems over traditional approaches is their ability
to automatically record the provenance of intermediate and final
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data products generated during workflow execution. This prove-
nance information generally consists of data and process dependen-
cies introduced during a workflow run, and is crucial for enabling
scientists to more easily understand, reproduce, and verify scien-
tific results [13].

Scientific workflow provenance is typically represented using
data and process dependency (i.e., causal) graphs [19]. The ability
to effectively store and query large numbers of dependency graphs
remains a significant challenge in managing provenance informa-
tion [13], since provenance graphs are typically heterogeneous (i.e.,
they do not share a common “schema”) and each such graph may
require considerable storage space. In particular, provenance infor-
mation may be many times larger than the workflow and input data
itself [11], workflows are often executed multiple times over dif-
ferent data sets and parameter settings, and most scientific research
projects consist of many distinct workflows [4, 2]. To help address
these challenges, a number of approaches have recently been pro-
posed for efficiently representing and storing provenance depen-
dency graphs [11, 16, 2, 5].

Approaches for querying stored provenance information, how-
ever, are largely still based on underlying physical data representa-
tions [13] (e.g., relational, XML, or RDF schemas), where users ex-
press provenance queries through corresponding query languages
(i.e., SQL, XQuery, or SPARQL). Typical provenance queries (e.g.,
see [24]) are exploratory and involve finding some or all of the data
and process dependencies that led to the creation of one or more
data products. Posed over dependency graphs, these queries re-
quire the computation of transitive closures as well as applying se-
lection conditions on corresponding lineage paths. For most users,
expressing these queries against the physical schemas used to rep-
resent provenance information requires considerable expertise and
is cumbersome even for simple queries [13]. The complexity of
these queries also presents a number of challenges for efficient
query evaluation [15].

In this paper we present a high-level query language for prove-
nance (QLP; pronounced “clip”) and novel evaluation techniques to
address these challenges. Our query language provides basic con-
structs that are tailored to querying provenance information, which
can help make common provenance queries easier to express for
non-experts. In addition, unlike other standard languages that re-
turn sets of nodes (e.g., [10, 17, 29, 12, 6]), QLP is closed under
lineage relationships. That is, answers to lineage queries are sets
of lineage dependency edges forming provenance subgraphs. This
approach simplifies the expression of complex queries, better sup-
ports provenance view definitions and graph visualization [13, 7],
and leads to query optimizations described in this paper.

QLP employs a general model of provenance to support a wide
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(d). Complete invocation dependency view on flow graph F(c).  Fine-grained data dependency view on lineage graph L

(b).  Trace T = <V, F, L> with fine-grained node dependencies L and flow relations F for the first invocation of each actor
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Figure 1: (a) Example XML-based workflow implementing the fMRI image analysis of the first provenance challenge; (b) The trace
showing the first invocations of each actor for a typical run; (c) The implied fine-grain data dependency graph for the data items in
(b); and (d) The implied invocation dependency graph for the run, with the first invocations of each actor shown in red.

range of scientific workflow systems. Most existing approaches
for representing provenance do not consider workflow computa-
tion models that work over structured data, including XML. These
standard provenance representation schemes (e.g., [19, 25, 17, 5,
6] among others) largely assume that workflow models are based
on transformation semantics, where each workflow step consumes
all input data and produces entirely new output data. Alternatively,
workflow models that work over structured data (e.g., [7, 23, 26,
27]) often employ update semantics, where only a portion of an in-
coming XML structure is modified by each workflow step. Using
update semantics can lead to a number of benefits for workflow de-
sign and reuse [3]. However, standard provenance approaches often
cannot represent dependency relationships correctly or efficiently
for XML-structured data [2, 23]. The model of provenance used
by QLP extends conventional approaches by explicitly supporting
workflow steps that process XML data and employ update seman-
tics [3], and QLP includes query constructs for accessing both the
structure and lineage of data items. More generally, QLP can be
used in a wide range of situations where data is structured into
nested collections and dependencies are defined among data nodes.

Contributions. This paper extends our prior work on efficiently
storing [2] and querying [3] scientific workflow provenance over
standard relational database technology. The main contributions
include: (i) a formal semantics for QLP constructs introduced in
[3]; (ii) techniques for evaluating QLP constructs; (iii) query op-
timization strategies that leverage the lineage-graph reduction ap-
proaches presented in [2]; (iv) novel algorithms for evaluating lin-
eage queries between sets of nodes of increasing path length; and
(v) experimental results verifying the effectiveness of our optimiza-
tion techniques using real-life and synthetic provenance traces. In
addition, we show that it is possible to simultaneously reduce the
amount of storage required to represent scientific workflow prove-
nance without negatively affecting query performance using our
techniques. Our results show that unlike using standard approaches

(which are often based on in-memory implementations, e.g., [29,
15, 21]), answering QLP queries using our optimization techiques
over a relational database system is both feasible and scales with
the size of provenance information and query complexity. While
targeted at provenance applications, our optimizations can also be
used in more general settings to efficiently answer a broad range of
path queries over labeled, acyclic digraphs.

Organization. This paper is organized as follows. Section 2 in-
troduces our provenance model and provides an overview of QLP
through examples. Section 3 gives a formal semantics for QLP
query constructs. Section 4 then describes different approaches
for evaluating QLP lineage queries against various strategies, in-
cluding our proposed techniques. Section 5 describes our exper-
imental evaluation of the QLP optimization techniques presented
in Section 4, considering both real and synthetic scientific work-
flow provenance traces. Section 6 discusses related work, and we
conclude in Section 7.

2. PROVENANCE MODEL AND QLP
Consider the workflow in Fig. 1(a) showing a straightforward

XML-based implementation of the fMRI image processing pipeline
used in the First Provenance Challenge [19]. We refer to steps in
the workflow as actors that are invoked over input data supplied
by previous steps.1 This workflow takes a set of anatomy im-
ages representing 3D brain scans and a reference image, and ap-
plies the actors in Fig. 1(a) as follows. (1) AlignWarp is invoked
over each anatomy image to produce a set of “warping” parame-
ters; (2) Reslice is invoked over each set of warping parameters to
transform the associated anatomy image; (3) Softmean averages the
transformed images into an atlas image; (4) Slicer produces three
different 2D slices of the atlas; and (5) Convert is invoked over each
2D slice to create a graphical image.
1In general, we also consider more complex workflow graphs in-
volving branching, merging, and loops, as in [20, 2, 7].
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In this implementation of the workflow, each invocation of an ac-
tor receives an XML structure, performs an update on a portion of
that structure, and then sends the updated version of the structure to
downstream actors (see Fig. 1b). Here we assume that each XML
structure denotes an unranked, labeled ordered tree representing
workflow data products, each tree node is assigned a unique identi-
fier, and tree nodes represent either collection tokens or data tokens
(which wrap complex objects or reference external data, e.g., stored
within a file). A collection token may be an internal node (for non-
empty collections) or a leaf node (for empty collections), whereas
data tokens are leaf nodes only.

Fig. 1(b) shows the first invocation of each actor for a typical run
of the workflow. The invocation of the AlignWarp actor (shown
as AlignWarp:1) modifies the first AnatomyImage collection (node
2), and replaces its contents with a WarpParamSet data token (node
11). Similarly, the invocation of the Reslice actor uses this Warp-
ParamSet to generate a new Image and Header data token (nodes
13 and 14, respectively). As shown, explict “fine-grained” data de-
pendencies are represented as part of the provenance of a run for
cases when only a portion of an input data structure d is modified
by an invocation. For example, the dashed arrow from node 11 to
node 2 in Fig. 1(b) states that the WarpParamSet was created from
the AnatomyImage collection by the first invocation of AlignWarp.
Note that implicitly, node 11 depends on each of the descendents of
node 2 (which includes nodes 6-10 in the figure). Similarly, each
descendent of a collection implicitly inherits the dependencies of
its ancestors (unless otherwise given). In our example, node 13 is a
descendent of node 12 (a ReslicedImage collection), and thus im-
plicitly depends on node 11. Taken together, Fig. 1(b) denotes a
portion of the trace for a run of Fig. 1(a); in particular, this trace
shows only the information associated with the first invocation of
each workflow actor.

Traces can be used to derive conventional data and process de-
pendency graphs (as views), as shown in Fig. 1(c) and 1(d), re-
spectively. Here, the data dependency graph only shows dependen-
cies for data nodes in Fig. 1(b), whereas the invocation dependency
graph shows the complete set of invocations, assuming that four
anatomy images were supplied to the workflow and three slices
were created. Note that while the trace can be used to infer the data
and invocation dependencies, the full trace cannot be reconstructed
from these two graphs alone.

QLP queries are posed against provenance traces using the con-
structs outlined in Table 1. These constructs were chosen based
on the common types of provenance queries identified in the liter-
ature [22, 13, 24, 8] (also see [3]). Different QLP constructs are
used to query over distinct dimensions of the trace (see Fig. 1) rep-
resenting: (i) lineage relations among nodes and invocations; (ii)
flow relations among input and output data structures of invoca-
tions; and (iii) structural relations among nodes within and across
data structures. We describe each of these dimensions below, using
Fig. 1 as an example.

Queries over Lineage Relations. QLP lineage queries are closed
under lineage relations such that a lineage query takes as input a set
of lineage relations (edges) L and returns a subset of these lineage
edges as output. A lineage edge in L is of the form 〈n1, i,n2〉 stating
that a node n1 was used to derive a node n2 via invocation i. In
this way L denotes the “derived” relation such that each edge in
L−1 is a “dependency”.2 For example, consider a lineage edge
〈2,AlignWarp:1,11〉 of Fig. 1(b) stating that node 2 was used by
the first invocation of the AlignWarp actor to produce node 11 (i.e.,

2We draw lineage edges as “dependencies” (see Fig. 1) in which
edges are labeled by their corresponding invocations.

node 11 depends on node 2). Sets of lineage relations define lineage
graphs, and QLP lineage queries act as filters over these lineage
relations. For example, consider the following QLP lineage queries
over the trace of Fig. 1(b).

* derived 19 (1)
6 derived * (2)
* through Slicer:1 derived * (3)

These queries return (1) lineage relations denoting the set of paths
starting from any node and ending at node 19, (2) lineage relations
denoting the set of paths starting at node 6 and ending at any node,
and (3) lineage relations denoting the set of paths that go through
the first invocation of the Slicer actor. QLP supports both a descrip-
tive form (used above) and a shorthand notation. Using the short-
hand notation, the above queries can be equivalently expressed as:
‘* ..19’, ‘6 ..*’, and ‘* ..#Slicer:1 ..*’ (or simply ‘* ..#Slicer:1’ or
‘#Slicer:1 ..*’). Nodes and invocations form steps within lineage
queries (generalized to XPath expressions and actor names below),
and lineage queries consist of two or more steps.

Queries 1-3 select lineage paths of length one or greater (referred
to as transitive paths). Although not shown in Table 1, QLP also
supports queries that select lineage paths having length one (i.e.,
immediate paths) using the ‘.’ operator, or in the descriptive form,
using the operators 1_derived (for nodes) and 1_through (for invo-
cations). Immediate and transitive path operators can be combined
in QLP. For example, the following query returns the lineage rela-
tions defining dependency paths that start at an input node of the
first invocation of the AlignWarp actor.

* 1_through AlignWarp:1 derived * (4)
Finally, lineage queries can be chained together, e.g., the following
queries

2 derived 12 derived 15 (5)
2 through Reslice:1 through Slicer:1 1_derived * (6)

return (5) lineage relations denoting paths that start at node 2 and
end at node 15 while passing through node 12, and (6) lineage re-
lations that start at node 2 and end at an output node of the first
invocation of Slicer while passing through the first invocation of
Reslice.

Queries over Flow Relations. QLP also allows lineage graphs
to be filtered based on specific versions (or occurrences) of nodes
within a trace using the @in and @out operators. For example, the
following queries

* @in derived 19 (7)
6 derived * @out (8)
* @in Slicer:1 derived * (9)
15 @in Slicer:1 derived * (10)
15 @out Slicer:1 derived * (11)

return (7) lineage relations denoting paths that start at a node in the
input data structure provided to the workflow run and end at node
19, (8) lineage relations denoting paths that start at node 6 and end
at a node in an output structure of the workflow run, (9) lineage
relations denoting paths that start at a node in an input structure of
the first invocation of Slicer, (10) lineage relations denoting paths
that start at the occurrence of node 15 in the input of the first invo-
cation of Slicer, and (11) lineage relations denoting paths that start
at the occurrence of node 15 in the output of the first invocation of
Slicer. Note that queries 1 and 7 (and similarly, queries 2 and 8)
are not equivalent for all traces. In particular, query 7 only returns
lineage graphs with paths starting at an input node of the workflow
run, whereas query 1 may contain paths starting at an intermediate
node (e.g., a node created by an invocation, but without data depen-
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Table 1: Summary of basic QLP constructs and corresponding descriptive notations
Construct Descriptive Form Result
Node and invocation expressions
n, x, * n, x, * Node expressions en as a single node n, XPath expression x, or set of trace nodes *.
#i, #a i, a Invocation expressions ei as an invocation i or actor a (denoting the set of a invocations).
en @in ei en @in ei Nodes of en input to invocations of ei. If ei is not given, then the nodes of en input to the workflow run.
en @out ei en @out ei Nodes of en output by invocations of ei. If ei is not given, then the nodes of en output by the workflow run.

Lineage-preserving path queries (examples)
* ..en * derived en The lineage graph for nodes in en.
en ..* en derived * The lineage graph for all nodes derived from nodes in en.
en1 ..en2 en1 derived en2 The lineage graph containing all paths from nodes in en1 to nodes in en2 .
en1 ..ei ..en2 en1 through ei derived en2 The lineage graph containing all paths from nodes in en1 to nodes in en2 that pass through an invocation in ei.

Functions over path queries
exists(p) exists(p) True if the trace contains a path defined by path query p.
invocations(p) invocations(p) The invocations of the lineage graph returned by path query p.
actors(p) actors(p) The actors of invocations of the lineage graph returned by path query p.
nodes(p) nodes(p) The nodes of the lineage graph returned by path query p.
input(p) input(p) The source nodes of the lineage graph returned by path query p.
output(p) output(p) The sink nodes of the lineage graph returned by path query p.

dencies). Also note that for the trace of Fig. 1(b), query 11 returns
an empty set of lineage relations since node 15 is not a dependency
of another node after the first invocation of Slicer.

Queries over Structural Relations. In addition to specific node
identifiers, QLP queries can also contain XPath expressions for ac-
cessing nodes based on their type (i.e., tag name) and parent-child
relationships. For example, consider the following queries.

* derived //AtlasImage//* (12)
/AnatomyImage[@modality=“speech”]//* derived * (13)

These queries return (12) lineage relations denoting paths that end
at a descendent node of an AtlasImage collection, and (13) lin-
eage relations denoting paths that start at a descendent node of an
AnatomyImage collection having the value “speech” for the modal-
ity metadata attribute. QLP also allows actor names to be used in
place of specific invocations. In this case, the actor name denotes
the set of invocations of the actor within the trace, returning lineage
relations denoting paths that pass through one of the actor’s invo-
cations. Similar to attributes in XPath, we also allow invocation
expressions to be selected based on their parameters, e.g., the ex-
pression ‘Slicer[@x=“0.5”]’ selects invocations of Slicer in which
the parameter x is set to “0.5”.

Queries over Each Dimension. Each of the above dimensions
can be combined into a single query. For example, the following
query returns the set of lineage relations denoting paths that end at
a descendent node of an AtlasImage collection output by a Slicer
invocation.

* derived //AtlasImage//* @out Slicer (14)
Combined queries can be (naively) evaluated by (i) obtaining the
structures resulting from @in and @out version operators, (ii) ap-
plying XPath expressions to these structures, and (iii) applying lin-
eage queries to the resulting nodes. For example, when applied
to the portion of the trace shown in Fig. 1(b), query 14 is evalu-
ated by: (i) obtaining the output structure of the Slicer invocation;
(ii) executing the XPath query ‘//AtlasImage//*’ over the structure
obtained in (i), returning nodes 16–19; and (iii) issuing a separate
lineage query for each node, i.e., ‘* derived 16’, ‘* derived 17’,
‘* derived 18’, and ‘* derived 19’, where the answer contains the
unique set of resulting lineage relations.

Additional Functions over Lineage Relations. Table 1 gives a
number of additional functions that can be applied to the results
of QLP lineage queries. The exists function determines whether a
trace contains a given path; invocations and actors return for a set of
lineage relations the invocations and actors, respectively; nodes re-

turns the nodes contained in a set of lineage relations; and input and
output return the source and sink nodes in a set of lineage relations,
respectively.

The following section provides a more detailed and formal treat-
ment of the constructs presented here, and QLP evaluation tech-
niques are presented in Section 4.

3. QLP SYNTAX, AND SEMANTICS
Provenance model. We consider the following QLP provenance
model. A workflow trace T = 〈V,F,L〉 consists of:

(i) a set of vertices V = D∪ I, where D is a set of XML data
structures defined over nodes N, and I is a set of invocations
over actors A;

(ii) a set of flow edges F = Fin ∪ Fout , where Fin ⊆ D× I and
Fout ⊆ I×D denote invocation inputs and outputs, respec-
tively; and

(iii) a set of lineage edges L ⊆ N× I×N denoting an acyclic di-
graph, where 〈n1, i,n2〉 ∈ L states that invocation i used n1 to
create n2.

An XML data structure d ∈ D consists of nodes n ∈ N such that
nodes(d) are the nodes of d. A structure d is similar to a snap-
shot (or version) of an overall XML document denoting the output
and/or input of each workflow step, e.g., Fig. 1(b) contains six such
data structures d1–d6. We write A(i) to denote the actor associated
with an invocation i ∈ I and I(a) to denote the set of invocations
associated with an actor a ∈ A. The input and output structures of
a trace T (i.e., of the corresponding workflow run) are defined as:

in(T ) = {d ∈ D | ¬∃i ∈ I : 〈i,d〉 ∈ Fout}
out(T ) = {d ∈ D | ¬∃i ∈ I : 〈d, i〉 ∈ Fin}.

QLP Syntax. QLP (shorthand) path expressions p are built from
the following grammar.

p ::= s .s | s ..s | s . p | s .. p

s ::= en | en q | ei

en ::= n | x | *
ei ::= #a | #i

q ::= @in |@out |@in ei |@out ei

A path p is composed of two or more steps s. A step is either a node
expression en or an invocation expression ei. A node expression
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JnK := {n}
JxK := {n | d ∈ D,n ∈ x(d)}
J*K := {n ∈ N}

J#aK := {i ∈ I(a)}
J#iK := {i}.

Jen @inK := {n ∈ JenK | d ∈ in(T ),n ∈ nodes(d)}
Jen @outK := {n ∈ JenK | d ∈ out(T ),n ∈ nodes(d)}

Jen @in eiK := {n ∈ JenK | d ∈ D, i ∈ JeiK,〈d, i〉 ∈ Ein,

n ∈ nodes(d)}
Jen @out eiK := {n ∈ JenK | d ∈ D, i ∈ JeiK,〈i,d〉 ∈ Eout ,

n ∈ nodes(d)}

Figure 2: Semantics of step expressions s(T ).

Jen1 .en2K(L) := {〈n1, i,n2〉 ∈ L | n1 ∈ Jen1K,n2 ∈ Jen2K}
Jen1 .eiK(L) := {〈n1, i,n2〉 ∈ L | n1 ∈ Jen1K, i ∈ JeiK}
Jei .en2K(L) := {〈n1, i,n2〉 ∈ L | i ∈ JeiK,n2 ∈ Jen2K}
Jei1 .ei2K(L) := {〈n1, i1,n2〉,〈n2, i2,n3〉 ∈ L | i1 ∈ Jei1K, i2 ∈ Jei2K}

Figure 3: Semantics of simple immediate path expressions
s1 .sn (T,L).

can be either an XPath x, a wildcard *, or a single node identifier n.
An invocation expression specifies either an actor #a denoting all
invocations of a, or an invocation identifier #i.3 Node expressions
are optionally qualified with either an @in or @out operator. A
simple path consists of exactly two steps in which s1 .s2 is referred
to as an immediate simple path and s1 ..s2 a transitive simple path.

QLP Semantics. Let T = (V,F,L) be a trace defined over nodes
N, invocations I, and actors A. Each individual step s is defined
as a function that maps traces T to sets of vertices such that s(T )
returns a subset of V , as shown in Fig. 2. For XPath expressions x
and XML structures d, in the normal way, x(d) returns those nodes
in d satisfying the expression x.

We define QLP path expressions p as functions that take traces
T = (V,F,L0) and lineage graphs L⊆ L0 and return the given trace
together with a new lineage graph Lp. Specifically, if p is a path
expression, T = (V,F,L0) is a trace, and L is a lineage graph,
p(T,L) = 〈T,Lp〉 such that Lp ⊆ L. Simple immediate path ex-
pressions of the form s1 .s2 for traces T and lineage graphs L are
defined in Fig. 3. For convenience we generally omit T when writ-
ing steps (as in Fig. 2) and paths (as in Figs. 3, 4, and 5).

Before defining more complex path expressions, we first con-
sider the exists operator in Fig. 4, which returns true if a given
lineage graph contains a path p and false otherwise. Checking
whether a path s1..s2 exists in L (i.e., the second definition in Fig. 4)
employs recursion: a path exists if an immediate path exists be-
tween s1 and s2 or else if there is a node n such that an immediate
path exists from s1 to n and a transitive path exists from n to s2.

The last two definitions in Fig. 4 consider the general case of
paths of length m > 2. As shown, invocation expressions are treated
as a special case since in general it is difficult to replace an invo-
cation with a corresponding node (without introducing a number
of additional conditions). For example, consider a lineage graph
comprising of two edges 〈n1, i1,n2〉 and 〈n2, i2,n3〉, and the 3-step
query exists(n1 .. i1 ..n2). Replacing i1 in the query with its input
n1 results in the two subqueries exists(n1 ..n1) and exists(n1 ..n2),
3As a convention, invocations are written a:1, denoting in this case
the first invocation of actor a.

whereas replacing i1 with its output n2 results in the subqueries
exists(n1 ..n2) and exists(n2 ..n2), both of which consist of unsatisi-
fiable subqueries of the form exists(n ..n). This issue is addressed
by the fourth definition in Fig. 4, which for this example first com-
putes n1 ..n2 over L, and then checks if both n1 .. i1 and i1 ..n2 exist
in the result (i.e., if i1 can be reached from n1, and n2 can be reached
from i1). Note that for general paths from s1 to sm, after applying
s1 ..sm, if it is possible to reach an invocation i from s1, then triv-
ially i falls on a path to sm, and conversely, if it is possible to reach
sm from i, then i must trivially fall on a path from s1.

Transitive path queries are defined in Fig. 5. Similar to Fig. 4,
invocations in path expressions of length m > 2 are defined as a
special case. Note also that in each definition of Fig. 5, we require
that a given path exists prior to returning lineage relations. Without
such a check, it is possible that edges forming incomplete paths
could be returned.

Finally, we note that because QLP lineage queries return sets of
dependency edges, more complex queries can be built from path
expressions using standard set operations. For instance, given two
QLP path expressions p1 and p2, it is possible to combine these into
more complex queries using set intersection p1∩ p2, union p1∪ p2,
and difference p1− p2.

4. QLP EVALUATION TECHNIQUES
In this section we describe techniques for evaluating transitive

path queries in QLP, i.e., queries that use the ‘..’ operator, since
these are often considerably more expensive to evaluate (e.g., see
[16, 2]) than XPath queries or queries that simply select specific
versions of structures within a trace (using @in and @out). The
evaluation of transitive path queries is closely tied to how lineage
relations are stored. Thus, the techniques proposed here consider
different approaches for storing lineage relations and associated
techniques for answering queries.

We consider path expressions p that take the form
s1 ..s2 ..s3 · · · sm of length m > 1 such that for a set of lin-
eage relations L, we select the set of paths in L satisfying p, and
return these paths as a subset of the given lineage relations. To
simplify the discussion, we assume that each step si in p can be
evaluated to a set of nodes Ni. Thus, a path expression p = s1 ..s2
can be rewritten as N1 ..N2 denoting a set of subqueries such that
the answer to p is comprised of the answers to each of the simpler
subqueries n1 ..n2 for n1 ∈ N1 and n2 ∈ N2.

If a step s in p is an invocation expression, we construct the
corresponding set of nodes as follows. First, we use in(s) and
out(s) to denote the set of input and output nodes across invo-
cations of s. Let p = s1 ..s2. If s1 is an invocation expres-
sion and s2 a node expression evaluating to N2, we rewrite p as
in(s1) ..(out(s1)∪N2). Similarly, if s2 is also an invocation expres-
sion, we rewrite p as in(s1) ..out(s2). Finally, if s1 is a node expres-
sion evaluating to N1 and s2 an invocation expression, we rewrite p
as (N1∪ in(s2)) ..out(s2). Rewriting lineage queries in this way can
be easily extended to paths containing more than two steps.

We start by presenting different strategies (denoted I, ICP,
ICP(N), and ICP(S)) for storing lineage graphs and discuss their
trade-offs in terms of storage and query efficiency. We then
describe additional optimization techniques for queries involving
paths containing more than 2 steps and for cases when steps evalu-
ate to multiple nodes.

Immediate Lineage Edges (I). A common approach for storing
lineage graphs is to store only the immediate edges in an edge table
Edge(N1, I,N2). Evaluating path expressions in this case requires
recursion or iteration over the edges of the graph. For example,
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Jexists(s1 .s2)K(L) ≡ Js1 .s2K(L) 6= /0

Jexists(s1 ..s2)K(L) ≡ Jexists(s1 .s2)K(L)∨ (∃n ∈ N : Jexists(s1 .n)K(L)∧ Jexists(n ..s2)K(L))
Jexists(s1 ◦1 en ◦2 s3 · · · sm)K(L) ≡ ∃n ∈ JenK : Jexists(s1 ◦1 n)K(L)∧ Jexists(n◦2 s3 · · · sm)K(L)
Jexists(s1 ◦1 ei ◦2 s3 · · · sm)K(L) ≡ ∃i ∈ JeiK : Jexists(s1 ◦1 i)K(Js1 ..smK(L))∧ Jexists(i◦2 s3 · · · sm)K(Js1 ..smK(L))

Figure 4: Semantics of exists (i.e., reachability) queries over path expressions s1 ◦1 s2 ◦2 · · · sm for m ≥ 3 and ◦ an immediate or
transitive path.

Js1 ..s2K(L) := Js1 .s2K(L)∪{l | n ∈ N,Jexists(s1 .n)K(L),Jexists(n ..s2)K(L), l ∈ Js1 .nK(L)∪ Jn ..s2K(L)}
Js1 ◦1 en ◦2 s3 · · · smK(L) := {l | n ∈ JenK,Jexistss1 ◦1 n◦2 s3 · · · smK(L), l ∈ Js1 ◦1 nK(L)∪ Jn◦2 s3 · · · smK(L)}
Js1 ◦1 ei ◦3 s3 · · · smK(L) := {l | i ∈ JeiK,Jexistss1 ◦1 i◦2 s3 · · · smK(L), l ∈ Js1 ◦1 iK(Js1 ..smK(L))∪ Ji◦2 s3 · · · smK(Js1 ..smK(L))}

Figure 5: Semantics of transitive path expressions.

the following Datalog program can be used to compute the set of
lineage relations 〈x, i,y〉 between any two nodes N1 and N2.

Q(N1,N2,N1, I,N2) :- Edge(N1, I,N2).
Q(N1,N2,N1, I,N) :- Edge(n1, I,N),Path(N,N2).
Q(N1,N2,X , I,Y ) :- Edge(N1, I,N),Q(N,N2,X , I,Y ).

Path(N1,N2) :- Edge(N1, I,N2).
Path(N1,N2) :- Path(N1,N),Edge(N, I,N2).

In the above query, Path is the transitive closure of the Edge re-
lation. Query Q computes lineage relations as path nodes are tra-
versed by recursively performing a breadth-first search (using both
Path and Q) .

Here, we propose a more efficient approach in which we (i) com-
pute the set of nodes on paths starting at node n1 and ending at node
n2, and then (ii) join the resulting path nodes with the Edge table
to return the corresponding lineage edges. The following Datalog
program implements this approach, which returns the same set of
edges as the previous program. In general, we adopt this query
approach when considering the immediate (edge) storage strategy,
which we denote as storage strategy I.

QI(N1,N2,X , I,Y ) :- PathNode(N1,N2,X),
PathNode(N1,N2,Y ),Edge(X , I,Y ).

PathNode(N1,N2,N1) :- Edge(N1, I,N2).
PathNode(N1,N2,N2) :- Edge(N1, I,N2).
PathNode(N1,N2,N) :- Path(N1,N),Path(N,N2).

Path(N1,N2) :- Edge(N1, I,N2).
Path(N1,N2) :- Path(N1,N),Edge(N, I,N2).

Note that this approach has a single recursive rule (Path) whereas
the previous approach has two recursive rules (Path and Q).

Immediate Edges and Dependency Closure (IC). The recursion
in the previous approach can be removed by materializing the Path
relation. Thus, this strategy (denoted IC) stores both the immedi-
ate edges in an edge table Edge(N1, I,N2) and the transitive closure
over dependency nodes Path(N1,N2). To compute the set of nodes
on lineage paths (PathNode), this approach must perform an expen-
sive self-join on a potentially large Path table. In addition, to return
a set of lineage relations, a join must still be performed between
PathNode and the Edge table. Note that this approach increases
storage size by materializing Path (at a cost of O(n2)) to reduce
query time by eliminating recursion.

Immediate Edges and Closure via Pointers (ICP). To address
the issue of performing a self-join on large, materialized Path ta-
bles, we employ a “pointer-based” strategy (denoted here as ICP)
that partitions the Path table into three smaller tables (based on re-
duction techniques) where the original Path table can be obtained
by joining these smaller tables together. This pointer-based storage
strategy is discussed in our earlier work [2]. In particular, the Path
table is partioned into the following three tables (see Fig. 6)

• Node(N2, I,Pdep,Pdepc)

• DepV(Pdep,N1)

• DepcV(Pdepc,Pdep)

where Pdep is a pointer to the set of immediate dependencies of n2;
and Pdepc is a pointer to a set of immediate dependency pointers
Pdep, representing the transitive dependency closure of n2. Using
this approach, the lineage graph shown in Fig. 6(a) is reduced to the
graph in Fig. 6(b).

The basic idea of the approach is to use pointers to store a single
copy of shared sets of dependency nodes. For instance, in Fig. 6(a),
the dependency set for node 16 is {13,14} and the dependency set
for node 17 is also {13,14}. Instead of storing multiple copies of
the same dependency set, a pointer &9 is used to refer to the de-
pendency set {13,14} in the DepV relation, and nodes 16 and 17
refer to pointer &9 in the Node relation. In addition, instead of stor-
ing the transitive closure between dependency nodes, DepcV stores
the transitive closure of the immediate pointers, e.g., as shown by
the dashed lines in Fig. 6(b). For instance, the transitive depen-
dency closure of node 16 is the set of nodes {6,7,9,10,11,13,14},
whereas in the pointer-based representation, node 16 has the transi-
tive dependency pointer &9′ that refers to the transitive dependency
(pointer) set {&1,&5,&9} in the DepcV relation.

The following rules can be used to reconstruct a node-based lin-
eage graph from a pointer-based (reduced) lineage graph.

Edge(N1, I,N2) :- Node(N2, I,Pdep,Pdepc),DepV(Pdep,N1).

Path(N1,N2) :- Node(N2, I,Pdep,Pdepc),DepcV(Pdepc,Pdep),
DepV(Pdep,N1).

As described in [2], both DepV and DepcV are further reduced
by factoring out common subsets of dependency sets. In this way,
DepV and DepcV are simple views defined over the further reduced
tables.

Note that these Edge and Path queries can be used with PathN-
ode defined above to answer QLP path expressions of the form
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(a). Node-based lineage graph 

(b). Pointer-based (reduced) lineage graph for (a) 
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Figure 6: Lineage graph with corresponding pointer-based rep-
resentations.

Algorithm 1 Evaluating single node-based path expressions (ICP)
Input: p = n1 ..n2 ..n3 · · · nm
Output: Set of lineage relations
1: for i≤ m−1 do
2: if not exists(ni.. ni+1) then
3: return /0 /* no lineage path for p*/
4: end if
5: end for
6: Np = /0

7: for i≤ m−1 do
8: Np = Np ∪{n | PathNode(ni,ni+1,n)}
9: end for

10: return {〈x, i,y〉 | x ∈ Np,y ∈ Np,Edge(x, i,y)} /* lineage edge */

n1 ..n2. While computing the PathNode relation is more efficient
in the pointer-based approach (since we avoid self-joins over the
materialized Path table), it still requires a number of joins over
intermediate relations (i.e., DepV, DepcV, Path, and PathNode).
To more efficiently evaluate path expressions, we (i) temporar-
ily materialize the views DepV and DepcV (which together con-
tain fewer overall tuples than Path, as shown in Fig. 6); (ii) eval-
uate and materialize the queries Path(N1,N) and Path(N,N2); (iii)
use these materialized Path queries to evaluate and materialize the
query PathNode(N1,N2,N); and (iv) use the materialized PathN-
ode query to answer Q(N1,N2,X , I,Y ), returning the set of lineage
edges 〈x, i,y〉.
Evaluating Simple Reachability Queries. To answer reachabil-
ity queries between two nodes n1 and n2, i.e., exists(n1 ..n2), we
simply evaluate the query Path(n1,n2).

Evaluating Single Node-Based Path Expressions. We evaluate
general path expressions p = n1 ..n2 ..n3 · · · nm−1 ..nm for m > 2
using ICP by transforming the expression into a set of simple path
expressions ni ..ni+1 (for 1 ≤ i ≤ m). If each simple path is reach-
able, then we find the set of nodes for each simple path, and com-
pute the set of edges over these nodes (see Algorithm 1).

Naive Evaluation of Set-Based Path Expressions (ICP(N)). A
straighforward approach for evaluating set-based path expressions
p = N1 ..N2 · · · Nm for Ni a set of nodes, is to rewrite p into multiple
node-based path expressions n1 ..n2 · · · nm for each ni ∈Ni. Each of
these node-based path expressions are evaluated in a similar way as
in Algorithm 1, i.e., for each node-based path expression we add the

Algorithm 2 Efficiently evaluating set-based path expressions
(ICP(S))
Input: p = N1 ..N2 ..N3 · · · Nm
Output: Set of lineage relations
1: for i≤ m do
2: NFi = {n | Path(ni,n),ni ∈ Ni} /* forward lineage nodes */
3: NBi = {n | Path(n,ni),ni ∈ Ni} /* backward lineage nodes */
4: end for
5: for i≤ m do
6: PNi = Ni
7: for j ≤ i−1 do
8: PNi = PNi ∩NFj

9: end for
10: for i+1≤ j ≤ m do
11: PNi = PNi ∩NB j /* pruned set */
12: end for
13: if (PNi == /0) then
14: return /0 /* no lineage path for p*/
15: end if
16: end for
17: for i≤ m do
18: PNFi = {n | Path(ni,n),ni ∈ PNi}
19: PNBi = {n | Path(n,ni),ni ∈ PNi}
20: end for
21: Np = /0

22: for i≤ m−1 do
23: Np = Np ∪ (PNFi ∩PNBi+1 )
24: end for
25: return {〈x, i,y〉 | x ∈ Np,y ∈ Np,Edge(x, i,y)} /* lineage edge */

corresponding set of nodes returned to Np and then compute the set
of edges as in step 10 (i.e., computing edges is deferred until each
of the node-based expressions is computed). Note however, that in
this approach the number of node-based path expressions that must
be computed from p is |N1| × |N2| × · · · × |Nm|. This node-based
approach for evaluting path expressions is referred to as ICP(N).

Efficient Evaluation of Set-Based Path Expressions (ICP(S)).
To avoid the cost of computing a potentially large number of
node-based path expressions, we propose a more efficient approach
that directly computes set-based path expressions (referred to as
ICP(S)). For simple paths N1 ..N2, we first evalute N1 ..* as fol-
lows: (i) compute the set of pointers Pdep for the set of nodes N1
from the DepV relation; (ii) from the set Pdep we select the set of
transitive pointers Pdepc from DepcV; (iii) from Node relation we
select all nodes NF (i.e., the “forward” lineage nodes) that have
pdepc ∈ Pdepc; and (iv) we add only those nodes from N1 to the
nodes obtained in (iii) that have a Pdep associated with them. We
then use a similar approach to evaluate the expression * ..N2, re-
sulting in a set of nodes NB (the “backward” lineage nodes). The
set of nodes N on the lineage path from nodes in N1 to nodes in N2
is NF ∩NB. Finally, the set of lineage edges is computed from N.

Given a path expression of the form p = N1 ..N2 · · · Nm it may be
the case that not all the nodesin the set Ni share a lineage relation-
ship with all the nodes in the other set. In ICP(S), we prune each of
the sets N giving a new set PN such that each node ni ∈PNi shares a
dependency relationship with at least one node in all other sets, and
vice versa. We rewrite p to PN1 ..PN2 · · · PNm and evaluate each
simple path PNi ..PNi+1 as in Algorithm 2. Lines 1–4 compute
“forward” and “backward” lineage nodes for each set Ni. Lines 5–
16 prune each set Ni giving PNi = (∩ j=i−1

j=1 NFi)∩Ni∩ (∩k=m
k=i+1NBi)

such that all nodes in the pruned sets PNi are reachable from at least
one node in each of the other sets. Lines 17–20 compute “forward”
and “backward” lineage nodes for pruned sets PNi. Lines 21–24
evaluate lineage nodes Np for path expressions over pruned sets.
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Figure 7: Example execution of set-based path expressions using Algorithm 2 for p = N1..N2..N3: (a) the inital lineage graph where
N1 = {1,2,3}, N2 = {4,5,6} and N3 = {7,8,9}; (b) the sets of nodes corresponding to N1, N2, and N3; (c) the “forward” and “back-
ward” lineage nodes for each Ni; (d) the pruned sets Ni such that all nodes in PNi are reachable from at least one node in all other
sets; (e) the pruned sets p′ = PN1..PN2..PN3; (f) the lineage nodes over pruned sets Np = nodes(PN1..PN2..PN3) = {2,6,9}; and (g)
the lineage edges 〈2,_,6〉 and 〈6,_,9〉 returned as a result of the lineage nodes {2,6,9}.

Finally, line 25 computes lineage edges from the lineage nodes.
To help see how this approach works, consider a QLP path ex-

pression query p = N1 ..N2 ..N3 for the lineage graph shown in
Fig. 7(a), where N1 = {1,2,3} (red color), N2 = {4,5,6} (blue
color), and N3 = {7,8,9} (green color). Fig. 7(c–g) shows the var-
ious stages of Algorithm 2 for evaluating set-based path expres-
sions. Fig. 7(c)) shows all those nodes that are reachable from the
nodes in each sets Ni. Fig. 7(d) selects those nodes from sets Ni
such that all those nodes are reachable from at least one node in all
other sets. Fig. 7(e) shows the pruned sets PNi, where PN1 = {1,2},
PN2 = {6}, and N3 = {8,9}, such that each node in Pni is reachable
from at least one node in other sets. Fig. 7(f) shows the nodes that
lie on lineage path over the pruned sets. Finally, Fig. 7(g) shows the
lineage edges 〈2,_,6〉 and 〈6,_,9〉 over the lineage nodes {2,6,9}.

Unlike in ICP(N), which requires |N1|×|N2|×· · ·×|Nm| simple
path expressions (Ni..Ni+1) to be computed, ICP(S) requires only
2∗m simple path expressions to be computed.

5. EXPERIMENTAL RESULTS
Here we evaluate the efficiency and scalability of answering QLP

queries over the storage strategies of Section 4 on both real and
synthetic traces. Real traces were generated from existing work-
flows implemented within the Kepler scientific workflow system
(using the extensions described in [7, 3]). Our experiments were
performed using a 2.4GHz Intel Core 2 duo PC with 2 GB RAM
and 120 GB of disk space. Each storage strategy used PostgreSQL
to store provenance information, and our QLP parser was imple-
mented in Java using JDBC to communicate with the provenance
database.

We compare query response time and storage size using synthetic
traces ranging from 100 to 6000 nodes, 5 ∗ 102 to 105 immedi-
ate dependencies, 103 to 108 transitive dependencies, and lineage
paths of length 10 to 100, respectively. The synthetic traces were
taken from [2], and represent typical lineage patterns of common
scientific workflows [2, 7, 24]. Fig. 8(a) shows the complexity of
dependencies (immediate and transitive) as the nodes in synthetic

traces increase, and Fig. 8(b) shows the storage size of these traces
under the different storage strategies. As shown, the pointer-based
approach used to store immediate and transitive dependencies in a
reduced form leads to considerably smaller storage size [2].

We also evaluated our approaches using the following real traces
from scientific workflows implemented within Kepler: the PTP,
GBL, CGR, and PLC workflows [7] use different approaches to
infer phylogenetic trees from protein and morphological sequence
data; the PC1 workflow was used in the first provenance challenge
[24] (and is similar to the example shown in Fig. 1); the STP, STM,
and CYC workflows are used in characterizing microbial commu-
nities by clustering and identifying DNA sequences of 16S riboso-
mal RNA; the WAT workflow characterizes microbial populations
by producing phylogenetic trees from a list of sequence libraries;
and the PC3 workflow was used within the third provenance chal-
lenge4. The dependency annotations of these traces range from 102

to 104 with 2∗102 to 2∗104 transitive dependency edges.
We consider the following QLP queries for evaluating query re-

sponse time.
* ..n (Q1)
n1 ..n2 (Q2)
n1 ..n2 ..n3 (Q3)
* ..N (Q4)
N1 ..N2 (Q5)
N1 ..N2 ..N3 · · · Nm (Q6)

These queries return (Q1) lineage relations denoting paths that lead
to a node n (e.g., to return the full lineage of n); (Q2) lineage rela-
tions denoting paths starting at node n1 and ending at node n2; (Q3)
lineage relations denoting paths starting at node n1 and ending at
node n3 that pass through node n2; (Q4) lineage relations denoting
paths that lead to nodes in a set of nodes N; (Q5) lineage relations
denoting paths starting at nodes in a set N1 and ending at nodes in
a set N2; and (Q6) lineage relations denoting paths that satisfying
path expression of varying length m (e.g., in our experiments, m

4see http://twiki.ipaw.info/bin/view/Challenge/
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(a) (b)

Figure 8: (a) shows dependency complexity of sample traces. (b) shows size for storing the sample traces in storage strategies.

(a) (b) (c)

Figure 9: Evaluating * ..n over storage strategies.

(a) (b) (c)

Figure 10: Evaluating n1 ..n2 over storage strategies.

(a) (b) (c)

Figure 11: Evaluating n1 ..n2 ..n3 over storage strategies.
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Figure 12: Comparing node-based ICP(N) and set-based ICP(S) approaches for evaluating N1 ..N2.

varies from 2 to 25).
These queries are evaluated over various storage strategies (I,

IC, and ICP, described in Section 4). We implemented strategy I
using XSB (a logic programming and deductive database system
that supports in-memory queries5) whereas the implementation of
IC, ICP(N), and ICP(S) uses PostgreSQL for storing and querying
traces.

Paths with Single Node Identifiers. In queries Q1–Q3 each step
evaluates to a single node identifier. Figs. 9–11 show the time to
evaluate Q1, Q2, and Q3, respectively, over I, IC, and ICP. In each
case, we show: (a) the total query execution time for computing
lineage relations, (b) the portion of the total time used to compute
the nodes that lie on the lineage path, and (c) the portion of the total
time used to compute the lineage edges from the nodes returned in
(b).

Fig. 9(a) shows that Q1 scales for ICP(N) but does not scale for
IC and I. I scales when returning set of nodes (Fig. 9(b)), but I does
not scale for computing edges from these set of nodes (Fig. 9(c)).
Similar results were observed for Q2 and Q3, which have more
complex path expressions. We also observe that as path expressions
increase in length, query time scales for ICP(N) but not for I and
IC. For example, for a trace containing 6000 nodes, Fig. 9 shows
that ICP(N) takes 500 ms, 600 ms, and 700 ms to evaluate Q1,
Q2, and Q3, respectively, representing only a marginal increase in
query response time as the length of paths increases.

Paths with Sets of Node Identifiers. In query Q5, each step eval-
uates to a set of node identifiers. Fig. 12 shows the time to evaluate
Q5 over the storage strategies. Fig. 12 shows that when the node-
based approach ICP(N) is used to evaluate Q5, the query time is
proportional to the product of the number of nodes in each path set.
This is due to the number of node-based subqueries that ICP(N)
must evaluate. However, for the set-based approach ICP(S), the
query response time remains constant as the size of sets increase.
As shown, ICP(S) outperforms ICP(N) when the number of nodes
in each set is greater than 2.

Evaluating Path Expressions of Increasing Length. Fig. 13
shows that using the optimization techniques of ICP(S), query re-
sponse time scales linearly as the length of path expressions in-
crease. In particular, we consider path expressions involving be-
tween 1 and 25 steps in Fig. 13. As shown, ICP(S) can be used to
efficiently and scalably evaluate complex QLP path expressions.

5see http://xsb.sourceforge.net/

N1 .. N2 .. N3 … Nm

Figure 13: Evaluating N1 ..N2 ..N3 · · · Nm using ICP(S).

Storing and Querying Real Traces. Fig. 14(a) and (b) show the
storage size for representing lineage graphs and transitive depen-
dencies for the real traces under our storage strategies. Fig. 14(a)
shows the storage size of “smaller” traces (trace nodes ranging
from 80 to 200) and Fig. 14(b) shows the storage size of “bigger”
traces (trace nodes ranging from 1000 to 10,000). Fig. 14(a) and
Fig. 14(b) show that the space requirement for storing lineage rela-
tions in ICP is considerably less than in I and IC. Note that I stores
only lineage edges, while ICP stores both lineage edges and tran-
sitive closure of dependency nodes using our reduction techniques,
and in most of the cases (except PTP, PC1, and PC3), the storage
size for ICP is less than that of I (implying that many nodes have
similar dependencies). Also, although ICP stores the same infor-
mation as IC, the storage size for ICP is less than that for IC.

Fig. 14(c) and (d) show the query time for evaluating Q4 and Q5
over real traces (both small and big) using IC and ICP. To consider
complex queries, each step in the path expressions evaluate to all
data nodes of the trace. As shown, path queries are evaluated using
ICP(S) in less than 102 ms, which is significantly less than using
IC which can take up to 106 ms. This is because IC has to perform
a self-join over the transitive closure table together with a join over
the dependency table, both containing a large number of tuples,
whereas ICP(S) performs three joins over the reduced tables. If we

296



(a) (b)
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* .. N N1 .. N2

Figure 14: (a) and (b) shows size for storing real traces in various storage strategies. (c) and (d) shows time for evaluating constructs
*..N and N1 ..N2 over these storage strategies.

compare this result with the results for the synthetic traces, we see
that as the number of dependencies increases, IC will perform even
worse.

Analysis. Our detailed experimental evaluation demonstrates that
ICP not only requires less storage, but evaluating QLP queries over
ICP is faster and scales with increasing complexity of traces. In
particular, our optimized set-based approach ICP(S) for evaluating
QLP path expressions is both efficient and scalable.

6. RELATED WORK
Conventional provenance approaches (e.g., [19, 17, 5]) largely

assume workflow models are based on transformation semantics,
whereas workflow systems that work over structured data (e.g., [7,
26, 23, 27]) often employ update semantics, i.e., where only a por-
tion of incoming data is modified by each workflow step. Apply-
ing conventional provenance approaches to such models results in
provenance information that is either too coarse or potentially in-
complete and even incorrect, which can lead to incorrect analysis
of scientific results [3]. Our provenance model subsumes conven-
tional approaches for representing workflow provenance by sup-
porting workflow computation models that permit multiple invoca-
tions of processes (e.g., for pipelining and loops), structured data,
and update semantics. In prior work, we show how existing models
(including OPM [19]) can be mapped to our provenance model [3].

Approaches for querying provenance are largely based on phys-
ical data representations [13] (e.g., relational, XML, or RDF
schemas), where users express provenance queries through corre-
sponding query languages (i.e., SQL, XQuery, or SPARQL). Prove-
nance queries often require computing transitive closures over de-
pendency relations, and expressing such queries using standard ap-
proaches is typically done using recursion or stored procedures [16,
11, 2]. Expressing such queries is both cumbersome and error-
prone, and requires considerable user expertise. Instead, high-level
languages such as QLP provide a separation between the logi-

cal provenance model and its underlying physical representation,
which allows for the use of different representation schemes and
additional optimization techniques. Our approach, in particular, au-
tomatically translates QLP queries to equivalent relational queries
expressed against the provenance storage schemes described in [2].

Standard approaches for querying provenance information (e.g.,
[10, 17, 29, 12, 6]) return sets of nodes (either sets of data items or
process invocations) as the query result. This approach requires ad-
ditional steps (queries) to reconstruct causal relations among nodes
within a query answer. Instead, QLP is closed under lineage re-
lations, where answers to lineage queries are sets of lineage de-
pendencies (edges) forming provenance subgraphs, and thus query
results are “provenance preserving.” This approach has a number
of advantages, e.g., for supporting provenance views, incremental
querying, and for supporting visualization applications [13, 7].

Our approach is similar to a number of approaches for query-
ing graph structures. In [15], a general query langauge based on
graph grammars is presented in which queries return subgraphs.
However, whereas our implementation uses a relational database
system to store and query provenance graphs, the approach in [15]
requires entire graph structures to be stored in main memory, and
recursive patterns over graphs (e.g., similar to our ‘..’) are not sup-
ported. Similarly, semi-structured query languages (e.g., Lorel [1]
and Florid [21]) often include so-called “path variables”, which can
be used to query over and return paths (i.e., the nodes) between
nodes. However, while a part of the query language of these sys-
tems, path variables are generally not implemented (e.g., see [1,
21]). Additionally, the approach used in QLP differs from that of
path variables in that query results are sets of lineage relations that
implicitly denote paths between nodes as opposed to directly return-
ing the paths themselves. This in turn offers advantages for query
composition and efficient evaluation (as described in Section 4).

Similar to QLP, vtPQL (used in VisTrails [10]) defines
provenance-specific query constructs. The primary construct in
vtPQL for answering lineage queries related to invocations is
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upstream(x), which return all modules (actors) that procede x in the
workflow definition. However, vtPQL assumes only a single lin-
eage path between two such modules, and thus would return incor-
rect results in the case where multiple paths exist between nodes.

The QLP construct exists(n1 ..n2) corresponds to a reachabil-
ity query [18, 28] over lineage graphs. Besides simple paths, our
implementation can efficiently answer more complex reachability
queries for paths p = s1 ..s2 ..s3 · · · sm of length m > 2 in which
each step s can evaluate to a set of nodes. Thus, our implementa-
tion can also efficiently determine whether a lineage graph satisfies
relatively complex path expressions.

7. CONCLUSION
We have presented a general approach for querying provenance

using a novel query language (QLP) that provides specialized con-
structs for querying over lineage and structural relations introduced
during scientific workflow runs. Answers to lineage queries are sets
of lineage dependencies (edges) forming provenance subgraphs,
which simplifies the expression of complex queries and allows
query results to be easily queried and visualized. This work ex-
tends our prior work on efficiently storing [2] and querying [3]
scientific workflow provenance by presenting (i) a formal seman-
tics for QLP constructs; (i) a set of novel query optimization tech-
niques that leverage the lineage-graph reduction approaches pre-
sented in [2]; and (iii) a detailed experimental evaluation based on
our QLP implementation that demonstrates the efficiency and scal-
ability of our approach. We have shown that our implementation
can simultaneously reduce the amount of storage required to rep-
resent scientific workflow provenance without negatively affecting
query performance. We have also shown that unlike using standard
approaches (often based on in-memory implementations, e.g., [29,
15, 21]), answering QLP queries using our optimization techiques
over a relational database system is both feasible and scales with
the size of provenance information and query complexity. Our op-
timizations can also be used in more general settings to efficiently
answer a broad range of path queries over labeled, acyclic digraphs.
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