
Representing and Transforming Model-Based Information*

Shawn Bowers and Lois Delcambre
{shawn, lmd}@cse.ogi.edu

Computer Science and Engineering Department
Oregon Graduate Institute

20000 NW Walker Road, Beaverton, OR 97006

* This research is supported in part by the National Science Foundation, through grants IIS-98-17492, CDA-97-03218, and
EIA-99-83518, and by the Defense Advanced Research Projects Agency, grant N66001-00-C-8032.

Abstract

There are a variety of ways to represent information and
each representation scheme typically has associated tools
to manipulate information so long as it is represented
properly. We are particularly interested in
representations for superimposed information, where
supplementary information can be used to highlight,
annotate, elaborate, and interconnect underlying
information. The Resource Description Framework
(RDF) and the Topic Map model are two such examples
that can represent superimposed information.

 We focus here on model-based information where
the information representation scheme provides structural
modeling constructs (analogous to a data model in a
database). For example, the XML model includes
elements, attributes, and permits elements to be nested.
Similarly, RDF models information through resources
and properties. We also consider other models such as a
spreadsheet (with a model that includes cells organized
into rows and columns) and a relational database (with a
model that includes tables with attributes).

The goal of our work is to enable the user to apply
tools of interest to the information at hand. Our
approach is to represent information for a wide variety of
model-based applications in a uniform way, using RDF,
and to provide a mapping formalism that can easily
transform information from one representation to
another.

1 Introduction

In this research, we recognize that many distinct yet
highly useful representation schemes have been proposed.
Each representation scheme, such as the Extensible
Markup Language (XML) [9], RDF [15] and Topic Maps
[8], has various tools associated with it. Rather than
promote the use of a single representation for information
(to the exclusion of others), we propose to easily convert

information from one representation scheme to another
when needed. We enable useful tools to be exploited
against existing information simply by converting the
information from its original form to the form required by
the tool of interest.

We focus in this work on information representation
schemes that are model-based. The XML model includes
elements with optional attributes and a relational database
model represents information in tables, for example. A
common feature of RDF, Topic Maps, and XML is their
use of an optional schema to type information. For
example, a particular RDF representation may conform to
an RDF Schema [11], a topic map may conform to a topic
map definition, and an XML document may be valid for a
document type definition (DTD).

We present here a generic representation scheme for
model-based information that allows the model, the
schema, and the instance information to be represented
explicitly. Our approach is to use a metamodel with an
associated, underlying representation expressed in RDF
and RDF Schema. This uniform, generic representation
for information enables simple transformation from one
form to another using our mapping rules.

This work is motivated by our general investigation
into what we call superimposed information. We briefly
present superimposed information in Section 2 and
explain how it relates to this work. Section 3 describes
the metamodel that provides a formalism to define various
information models. Section 4 describes the associated
representation for information, based on our metamodel
using a flat representation scheme. In Section 5, we show
how logical rules over the representation scheme can
formally specify and implement superimposed-layer
mappings from one representation to another. We discuss
related work in Section 6 and present conclusions and
future work in Section 7.

2 Superimposed Information: Motivation for
this Work

Suppose you are planning a vacation using the Web.
Imagine that you are able to drag and drop selected
information from Web sites into a scratchpad tool that
allows you to group information and attach annotations
such as “Hotels in Vancouver,” “Restaurants in Victoria,”
“Day trips from Nanaimo,” etc. The scratchpad keeps
links to the original information, allowing you to navigate
back to it whenever you need to (e.g., you may have
selected a regular rate, but wonder if the hotel has a
weekend special).

To help you manage the cost of the trip, including
exchange rates, lodging, and transportation expenses, you
use a spreadsheet application, which automatically lifts
the appropriate data from the scratchpad. In developing
an itinerary, you select information from the scratchpad
and place it into a calendar application, which also allows
you to browse back over the original documents. You
also decide to lift all of the address and phone numbers
relevant to the trip into your address book (e.g., to load
into your Palm Pilot) and integrate the payment
information you’ve collected into your checkbook
software to develop a budget for your vacation.

Each tool in this example leverages superimposed
information [13, 16] to help manage and organize data.
Superimposed information is a layer (the superimposed
layer) of data placed over existing information sources
(the base layer) to select, combine, highlight, supplement,
and provide additional links among selected information
elements within the underlying sources.

The basic arrangement of the superimposed and base
layers is shown in Figure 1. The base layer consists of
information sources that are referenced by marks in the
superimposed layer. Marks reference information at
various granularities within a source, as desired by the
user and as permitted by the addressing scheme.
Information-sources can be of many different types
including HTML pages, XML documents, PDF files,
Microsoft PowerPoint presentations, Excel spreadsheets,
databases and so forth.

Model

Schema Data

Instance Data with Marks

Information
Source1

Information
Source2

Superimposed
Layer

Base
Layer

marksmarks

Figure 1. The superimposed and base layers.

Superimposed information has the following
characteristics:

• It can contain additional information about
elements in the base layer (e.g., by organizing,
annotating, or highlighting elements).

• It can have varying degrees of structure.

• It does not modify the base layer.

• It can contain marks that connect the
superimposed layer to elements within the
existing information sources.

3 The Metamodel for Representing Model-
Based Information

Information of interest in this research consists of three
levels: model, schema, and instances as shown in Figure 2.
All three layers are optional. Instance data may not have a
schema and it may or may not have a model, although we
focus in this research on information representation
schemes that exploit a model. It is also possible to
describe a model and a schema, without having instance
data present.

To describe multiple information models, we define
a level of abstraction above the model, called a
metamodel, which is used to define the model of interest
to the superimposed application. Figure 3 shows the role
of the metamodel for three information representations:
RDF, Topic Maps, and XML.

Model

Schema Data

Instance Data

Figure 2. The three layers of information in a model-
based information representation scheme.

The metamodel describes the basic abstractions used
to define model constructs and their relationships. A
model consists of schema and instance constructs that are
used to define data. Additionally, the model describes the
conformance relationship between instance-level data and
schema-level data. Each level of the architecture can be
viewed as an instantiation of the levels above it. More
specifically, model constructs (i.e., schema and instance
constructs) are particular instantiations of the abstractions
defined by the metamodel, schema-level data are
particular instantiations of the model’s schema constructs,
and instance-level data are instantiations of the model’s
instance constructs and can conform to the schema-level
data.

In order to understand the three levels, Figure 4
shows an example of model, schema, and instance data for

XML. Notice that we use an “open” DTD, which means
that elements and attributes not defined in the DTD can be
included in XML documents.

The definition of our metamodel is similar to other
metamodel approaches in the object [18, 19] and database
communities [1-5, 17] for describing structural models
such as the entity-relationship model, the relational model,
the hierarchical model, and the various semantic data
models including the UML.

However, we support a number of unique features
with our metamodel. One such feature is the inclusion of
marks, which are references from the superimposed layer
to elements within the base layer and may appear at
various places within a superimposed model [13].
Another distinguishing characteristic of our metamodel is
the relaxation of schema-first definitions that require

schema to be created prior to instances. For example, in a
relational database, a table (which represents schema
information) must be created before any of its rows. Not
only do we relax schema-first definitions, we also allow
for data that is not explicitly typed. For example in a
topic map, a topic can exist without being associated to
any type even if there is a topic map definition.

The final unique characteristic of our metamodel
representation is that it accommodates multiple levels of
schema-instance relationships. In a topic map, topics can
have a type that is also a topic, and so it too can have a
type, resulting in two levels of schema and instance
definition.

Figure 5 shows the abstractions of the metamodel.
The two basic elements are the construct, which
represents a basic structural definition within a model, and

RDF
Model

RDF Schema
Triples

RDF Triples

Topic Map
Model

Topic Map
Definition

Topic Map
Instances

Metamodel

XML
Model

XML
DTD

XML Document

Basic Set of
Abstractions

Model
Constructs

Schema Level
 Data

Instance Level
Data

Figure 3. The RDF, Topic Map, and XML models within a superimposed layer.

Constructs and Construct Relationships
• Elements, Element types, Attributes, Attribute types, etc.
• Elements contain Attributes
• Elements can be Nested
• …

Simplified
XML Model

<!ELEMENT league (team*)>
<!ELEMENT team (player*)>
<!ATTLIST team teamName CDATA #REQUIRED>
<!ELEMENT player (position*)>
<!ATTLIST player playerName CDATA #REQUIRED>
<!ELEMENT position #PCDATA>

XML DTD
(Schema)

XML
Document
(Instances)

<league>
 <team teamName=”Blazers”>
 <player playerName=”Steve Smith”/>
 <position> Guard </position>
 <rebounds> 4.2 </rebounds>
 </player>
 <player playerName=”Brian Grant”>
 <position> Forward </position>
 <rebounds> 5.3 </rebounds>
 </player>
 </team>
 …
</league>

Defines a league as an instance of an
Element Type (schema construct)

Defines a teamName as an instance of an
Attribute Type (schema construct)

An instance of an Element that conforms to
the team Element Type defined in the DTD

An instance of an Attribute that conforms to
the playerName Attribute Type defined
in the DTD

An instance of an Element that has no type
defined in the DTD.

Model constructs and their relationships
are defined using the abstractions of the
metamodel.

Figure 4. An example of each of the three levels (model, schema, and instance) for XML.

structural connector, which represents a relationship
between constructs.

There are two special constructs: mark and lexical. A
mark describes a model construct whose instances
represent connection-points to the base layer. A lexical
describes a model construct whose instances contain
primitive-value types (e.g., string). There are also two
special structural connectors: conformance, which
specifies a schema-instance relationship, and
generalization, which specifies inheritance between
constructs.

Table 1 shows an example of the XML model
defined in terms of our metamodel. The XML model has
been simplified to consist of Element Types, Elements,
Attribute Types, Attributes, Primitive Content Type (e.g.,
PCDATA), and Primitive Content along with a minimal
set of relationships between them.

Element constructs in XML form a hierarchy and are
represented by the model connector Nested Element. By
using multiplicity constraints, we can specify that an

Element is either not nested or nested within one parent
Element, and can have many Elements nested within it.

We use conformance connectors to specify schema-
instance relationships between Attribute and Attribute
Type, Element and Element Type, and Primitive Content
and Primitive Content Type. We may also wish to apply
constraints to the relationship. For example, by assigning
the appropriate multiplicity constraints, we can specify
whether an instance construct can be created prior to a
schema construct.

The metamodel does not restrict model constructs to
be at the instance- or schema-level. This allows models to
have multiple levels of schema and instance definition.
For example, in the Topic Map model we could define a
Topic construct that has a conformance connector to itself.

Finally, we allow an Element Type construct to
contain a Primitive Content Type construct. We define
Primitive Content Type as a lexical construct, which
means instances of the Primitive Content Type can be
primitive types such as string, integer, or more specialized

Construct Structural
Connector

Mark Lexical Conformance

Connects 2 Constructs
Basic Metamodel

Elements

Special Kinds of Metamodel
Elements

Figure 5. The elements defined by the superimposed-information metamodel.

Generalization

Table 1. The XML model described in terms of the superimposed-information metamodel. The elements of the
XML model (bottom) are instances of the corresponding Metamodel element definitions (top).

Metamodel
Elements

Constructs Lexicals Connectors Conformance Connectors

XML
Model

Element
Type

Attribute
Type

Element

Attribute

Primitive
Content
Type

Primitive
Content

Primitive
Content

Nested Element Type
Connects Two Element Types

Nested Element
Connects Two Elements

Element Content
Connects an Element to Primitive Content

Element Content Type
Connects an Element Type to Prim.
Content Type

Element Attribute
Connects an Element to an Attribute

Attribute Element Type
Connects an Element Type to an Attribute
Type

Element Instance Of
Connects an Element to its Element
Type

Attribute Instance Of
Connects an Attribute to its Attribute
Type

Content Instance Of
Connects Prim. Content to its
Primitive Content Type

types such as PCDATA for XML. Elements that conform
to the Element Type must then contain Primitive Content
with the type specified by the Primitive Content Type.

4 Representing Superimposed Models,
Schemas, and Instances

Models defined by the metamodel are stored using a
representation scheme based on RDF. Although model
engineers can specify models directly using the RDF
representation, we believe it is more convenient to define
models visually. Therefore, we also define a visual
representation of models using a subset of the UML.

4.1 The Resource Description Framework

RDF is a graph-based model for attaching metadata to
information sources on the web (and can be itself
considered a superimposed information model). It
consists of a set of statements that are represented as
triples. A triple denotes an edge between two nodes and
has a property name (an edge), a resource (a node), and a
value (a node). A value can be either a resource or a
literal. Resources can represent anything from web pages
to abstract concepts. A literal is a primitive type such as

an integer or string. For example, the RDF triple (creator,
“index.html”, “Ora Lassilla”) can be read as “the creator
of index.html is Ora Lassilla” where “creator” is a
property name, “index.html” a resource, and “Ora
Lassilla” a string [15].

RDF Schema is a type system for RDF. It provides a
mechanism to define classes of resources and property
types, which restrict the domain and range of a property.
The resource Class is used to type resources and the
resource Property is used to type properties. Each
Property consists of a domain and range constraint. In
addition, RDF Schema defines the property subClassOf to
represent a subset-superset relationship between classes,
subPropertyOf for a specialization relationship between
properties, and type to specify resource creation. The
RDF and RDF Schema specifications use XML as an
interchange format to exchange RDF and RDF Schema
triples.

4.2 The Metamodel Defined using RDF

Figure 6 shows the definition of the metamodel using both
the RDF XML syntax and RDF triples (for readability, the
namespaces rdf and rdfs are not included). We represent

(type, “Construct”, Class)
(type, “Mark”, Class)
(subClassOf, “Mark”, Construct)
(type, “Lexical”, Class)
(subClassOf, “Lexical”, Construct)
(type, “Connector”, Property)
(domain, “Connector”, Construct)
(range, “Connector”, Construct)
(type, “Conformance”, Property)
(subPropertyOf, “Conformance”, Connector)
(type, “Generalization”, Connector)
(subPropertyOf, “Generalization”, Connector)

(type, “domainMult”, ConstraintProperty)
(domain, “domainMult”, Connector)
(range, “domainMult”, String)
(type, “rangeMult”, ConstraintProperty)
(domain, “rangeMult”, Connector)
(range, “rangeMult”, String)

(type, “instanceOf”, Property)

(instanceOf, “String”, Lexical)
(instanceOf, “Number”, Lexical)

<RDF>
 <Class ID=”Construct”/>
 <Class ID=”Mark”>
 <subClassOf resource=”#Construct”/>
 </Class>
 <Class ID=”Lexical”>
 <subClassOf resource=”#Construct”/>
 </Class>
 <Property ID=”Connector”>
 <domain resource=”#Construct”/>
 <range resource=”#Construct”/>
 </Property>
 <Property ID=”Conformance”>
 <subPropertyOf resource=”#Connector”>
 </Property>
 <Property ID=”Generalization”>
 <subPropertyOf resource=”#Connector”>
 </Property>

 <ConstraintProperty ID=”domainMult”>
 <domain resource=”#Connector”/>
 <range resource=”#String”/>
 </ConstraintProperty>
 <ConstraintProperty ID=”rangeMult”>
 <domain resource=”#Connector”/>
 <range resource=”#String”/>
 </ConstraintProperty>

 <Property ID=”instanceOf”/>

 <Lexical ID=”String”/>
 <Lexical ID=”Number”/>
 </RDF>

Figure 6. The superimposed-information metamodel represented in RDF XML and as RDF Triples.

RDF XML Syntax RDF Triples

Construct
and

Connector
Definitions

Constraint
Definitions

Creation
Property

Primitive Type
Definition

construct, mark, and lexical as RDF classes, where mark
and lexical are sub-classes of construct. Similarly, we
represent connector, generalization, and conformance as
properties, each with a construct as domain and range.
Generalization and conformance are both sub-properties
of connector.

Domain and range multiplicity constraints are
defined as RDF Constraint Properties. A Constraint
Property is a higher-order property that can be used to add
constraints (beyond domain and range) to a Property. To
create model constructs and connectors as well as schema
and instance data, we define a property called instanceOf.
Notice that the domain and range of instanceOf is not
defined, which means that it can be used over any
resource and contain any value. We also create two
lexical constructs: string and number. If desired, a model
engineer can specify a new primitive type (e.g.,
PCDATA) using a similar definition, providing new
primitive types are primitive (i.e., data of the type must
have some form of string representation like a float,
integer, or date).

4.3 The RDF and Visual Model Representation

Figure 7 depicts both the RDF and visual representations
of the XML model of Section 3 using the metamodel. In
the visual description, UML classes are mapped to
constructs; relationships and class attributes are mapped to
connectors. Attributes must have a primitive type as a

range (e.g., string or number) and implicitly have a
domain multiplicity of zero-or-one and a range
multiplicity of one. UML stereotypes are used to
distinguish marks and lexicals from constructs, and
conformance connectors from regular connectors.
Additionally, UML generalization relationships require a
name (which is not a general requirement of UML).

The schema-level constructs of Figure 7 are Element
Type, Attribute Type, and Primitive Content Type. The
instance-level constructs are Element, Attribute, and
Primitive Content. The conformance connector between
Element and Element Type, Attribute and Attribute Type,
and Primitive Content and Primitive Content Type specify
the schema-instance relationships. The conformance
connectors only represent a structural connection between
the constructs and do not fully define the meaning of the
conformance (e.g., if an Element conforms to an Element
Type, then each nested Element should conform to the
appropriate nested Element Type).

Figure 8 shows example schema- and instance-level
data that represent the XML document excerpt of Figure
4. (See [10] for more detailed examples of the triple
representation). Notice that RDF provides a uniform
representation of model, schema, and instance by allowing
the model, schema, and instance data to be described
using only RDF triples.

Figures 9 and 10 describe the Structured-Map and
Structured-Bundle models using the UML visual

<RDF>
 <Construct ID=”ElementType”/>
 <Construct ID=”AttributeType”/>
 <Construct ID=”Element”/>
 <Construct ID=”Attribute”/>
 <Construct ID=”Content”/>
 <Lexical ID=”ContentType”/>

 <Connector ID=”elemTypeName”>
 <domain resource=”#ElementType”/>
 <range resource=”#String”/>
 <domainMult value=”*”/>
 <rangeMult value=”1”/>
 </Connector>
 <Connector ID=”nestedElemType”>
 <domain resource=”#ElementType”/>
 <range resource=”#ElementType”/>
 <domainMult value=”0..1”/>
 <rangeMult value=”*”/>
 </Connector>
 <Conformance ID=”elemInstOf”>
 <domain resource=”#Element”/>
 <range resource=”#ElementType”/>
 <domainMult value=”*”/>
 <rangeMult value=”0..1”/>
 </Conformance>
 …
</RDF>

ElementType

AttributeType

Element Attribute

PrimitiveContent

elemTypeName : String

attTypeName : String

tagName : String attName : String
attValue : String

<<conformance>>
elemInstOf

holds

attributeOf

attTypeOf

<<conformance>>
attInstOf

*

*

*

*

0..1

0..1
1

1
*

0..1
1

nestedElemType

nestedElem

*

0..1

0..1

Figure 7. The XML model represented using UML with a sample of the RDF representation.

<<Lexical>>
PrimitiveContentType

text : String

*

<<conformance>>
contentHasType

0..1elemContType

0..1*

representation. The Structured-Map model is a simplified
version of the Topic-Map model, which uses a single level
of schema and instance definition to allow Structured-Map
data to be easily stored in a relational database. The
model is designed for CARTE [12], which is a program
that dynamically creates Web pages to navigate
Structured-Map data. In CARTE, marks are represented
as URLs. The user navigates through Topic Types, Topic
Instances, and Topic Relations to reach Anchors, which
contain marks. When a mark is selected, the referenced
URL is displayed in a new Web browser window.

TopicType, TopicRelType, and AnchorType
represent the schema constructs of the model.
TopicInstance, TopicRelInst, AnchorInst, and Address
represent the instance constructs of the model. CARTE
requires schema-first definitions. For example, a
TopicType (perhaps named “painter”) must exist prior to
creating a conforming TopicInstance (e.g., with the name
“Van Gogh”). We express this requirement through the
use of range multiplicity constraints on each conformance
relationship.

The Structured-Bundle model is used by SLIMPad
(Superimposed-Layer Information Manager scratchPad),

which is a scratchpad application being built for the
Traces project [20]. The goal is to develop specialized
applications similar to SLIMPad that enable medical
experts to organize important facts and issues excerpted
from a base layer of digital medical documents.
Currently, users interact with SLIMPad by selecting
content from any of a number of information sources
including XML documents, Microsoft PowerPoint slides,
Excel spreadsheets, and PDF files, and dragging it into the
scratch pad. Once content is placed into SLIMPad, a
scrap is created that contains a mark with a reference back
to the content. Scraps can be organized into bundles and
bundles can be nested. By selecting a scrap, the content
referenced by the corresponding mark (inside the scrap) is
displayed and highlighted at the information source.

In SLIMPad, users can create and use templates as
schema-level data. By instantiating a template, the user is
provided with a set of default bundles organized
hierarchically within the scratch pad. However, as shown
by the multiplicity constraints, bundles can be created
without an associated template. Within the medical
domain, we see a number of templates being used for
specialized tasks (e.g., templates for making drug-

<RDF>
 …
 <ElementType ID=“player_type”>
 <elemTypeName value=“player”/>
 <nestedElemType
resource=“#position_type”/>
 <attTypeOf resource=“playerName_attr”/>
 </ElementType>
 <ElementType ID=“position_type”>
 <elemTypeName value=“position”/>
 </ElementType>
 <AttributeType ID=“playerName_attr”>
 <attName value=“playerName”/>
 </AttributeType>
 <Element ID=“player1”>
 <elemInstOf resource=“#player_type”/>
 <tagName value=“player”/>
 <attributeOf resource=“#playerName1”/>
 <nestedElem resource=“# position1”/>
 <nestedElem resource=“#rebounds1”/>
 </Element>
 <Attribute ID= “playerName1”>
 <attInstOf resource=“#playerName_attr”/>
 <attName value=“playerName”/>
 <attValue value=“Steve Smith”/>
 </Attribute>
 <Element ID=“position1”>
 <elemInstOf resource=“#position_type”/>
 <tagName value=“position”/>
 </Element>
 <Element ID=“rebounds1”>
 <tagName value=“rebounds”/>
 </Element>
</RDF>

RDF XML Syntax RDF Triples

…
(instanceOf, “player_type”, ElementType)
(elemTypeName, “player_type”, “player”)
(nestedElemType, “player_type”, position_type)
(attTypeOf, “player_type”, playerName_attr)

(instanceOf, “position_type”, ElementType)
(elemTypeName, “position_type”, “position”)

(instanceOf, “playerName_attr”, AttributeType)
(attName, “playerName_attr”, “playerName”)

(instanceOf, “player1”, Element)
(elemInstOf, “player1”, player_type)
(tagName, “player1”, “player”)
(attributeOf, “player1”, playerName1)
(nestedElem, “player1”, position1)
(nestedElem, “player1”, e5)

(instanceOf, “playerName1”, Attribute)
(attInstOf, “playerName1”, playerName_attr)
(attName, “playerName1”, “playerName”)
(attValue, “playerName1”, “Steve Smith”)

(instanceOf, “position1”, Element)
(elemInstOf, “position1”, position_type)
(tagName, “position1”, “position”)

(instanceOf, “rebounds1”, Element)
(tagName, “rebounds”, rebounds)

Figure 8. Schema and instance data of the XML model.

interaction decisions for individual patients differ from
templates for managing the state of an Intensive Care
Unit). While SLIMPad and CARTE handle multiple
schemas, we envision a number of schema-specific
versions of SLIMPad designed around a single template
(schema), in which the schema-level data is designed by
an application developer.

Note that in Figure 10 we use the UML subclass
symbol to denote generalization. However, we require
that the relationship be named, since we are creating a
new connector instance in the model. Additionally,
arrows are not included in the association between a Scrap
and an AbstractBundle since the association is bi-
directional.

5 Mappings

In this section, we describe an approach to transforming
information from one representation to another. Note that
we can transform information between tools that use
different models and schemas. In general, there will be
various ways to map between information representations,
depending on the user’s desires and the applications of
interest. Therefore, instead of trying to automatically
generate mappings, we provide a technique for mappings
to be specified manually, and perform the conversions as
needed.

TopicType

ttypename : String

<<Mark>>
Address

markId : String

topic
Type1

1

*

Figure 9. CARTE’s Structured-Map model.

TopicInstance

title : String
topicInsID : Number

TopicRelType

relType : String

TopicRelInst

AnchorInstAnchorType

anchorRole : String

topic
Type2

1

1 1topic
Ins1

topic
Ins2

<<conformance>>
topic_instOf

<<conformance>>
rel_instOf

<<conformance>>
anchor_instOf

topicType

* * * *

1

*

1

topicIns

*
1

address

1

1

1 *

*

*

Bundle

bundleName : String
bundleXPos : Number
bundleYPos : Number

Scrap

scrapName : String
scrapXPos : Number
scrapYPos : Number

AbstractBundle
AbstractTemplate

SlimPad

padName : String

PadTemplate

templateName : String

<<conformance>>
pad_instOf

BundleTemplate

bundleTypeName : String

parent
Bundle

nested
Bundle

parent
Template

nested
Template

<<Mark>>
ScrapMark

markId : String

<<conformance>>
bundle_instOf

enclosing
Bundle

bundle
Content scrap

Mark

1

*

1

*

1

*

* 1

*

*

0..1

0..1

Figure 10. SLIMPad’s Structured-Bundle Model.

subBundle

subBundle

subTemplate

subTemplate

5.1 Mapping Rules

Mappings are specified using production rules. The rules
are defined over triples of the RDF representation for
superimposed information. Since a triple is a simple
predicate (e.g., “triple(creator, index.html, Ora Lassilla)”),
we specify mapping rules using a logic-based language
such as Prolog, which allows us to both specify and
implement the mappings. We do not require mappings
between superimposed layers to be complete, since only
part of a model or schema may be needed while using a
specific tool.

Table 2 contains the basic definitions used to specify
mappings. RDF triples are represented with the predicate
τ. Quotes are used to denote constants and upper-case
letters denote variables. For example, the predicate
τ(‘creator’, X, Y) is used in a mapping rule to match all
triples that are related through the property “creator”
(since X and Y are variables). The predicate S is true if
its τ-predicate is in a superimposed layer L. For example,
S(‘xml’, τ(‘instanceOf’, ‘Element’, ‘Construct’)) would be
true if there were an “Element” construct defined in a
superimposed layer named “xml.” Finally, we define a
mapping rule as a production in which the left- and right-

hand sides consist of S-predicates. The left-hand side S-
predicates must be true in order to generate the right-hand
side S-predicates (i.e., the right-hand side S-predicates are
produced by the rule). For example, the mapping rule
S(‘source’, τ(‘creator’, X, Y)) ⇒ S(‘target’, τ(‘owner’, X,
Y)) would add a triple τ(‘owner’, X, Y) to the
superimposed layer named “target” for every triple that
matched τ(‘creator’, X, Y) in the superimposed layer
named “source.” Therefore, if τ(‘creator’, ‘index.html’,
‘Ora Lassilla’) is a triple in the superimposed layer named
“source,” then the triple τ(‘owner’, ‘index.html’, ‘Ora
lassilla’) will be added to the superimposed layer named
“target.”

Table 3 describes the functions that are used to
perform mappings. The conversion function applies a set
of mapping rules to a source and target superimposed
layer. Conversion generates a new superimposed layer
that contains the generated triples of the mappings. In our
current implementation, Prolog performs the conversion
function.

The extract model function is used to extract model
information from a superimposed layer. It can also be
applied to the result of a conversion. For example, in an
inter-model mapping, we want the resulting superimposed

Table 2. Predicate and mapping rule definitions.

Symbol Definition

τ A predicate that represents an RDF triple, for example τ(‘creator’, ‘url’, ‘person’).

L A set (i.e., database) of triple predicates τ for superimposed layer l.

S A predicate of the form S(L, τ) that is true if τ ∈ L.

Μ A mapping that consists of a set of mapping rules.

m A mapping rule with the form:

T ⇒ T′, where T, T′ are sets of S predicates. The rule can be read as follows: if the left hand side matches (i.e., each S ∈ T is true)
then for each S(L, τ) ∈ T′ add τ to L.

Table 3. Functions used to provide mappings.

Function Definition

Conversion : Μ × Ls × Lt → Lr Conversion takes a mapping Μ and applies the mapping rules of Μ to a source layer Ls and a target layer
Lt, and returns a new layer Lr. Conversion is a basic rule-based algorithm that computes the fixed-point of
applying mapping rules to the source and target superimposed layers.

ExtractModel : L → L′ L′ = L1 ∪ L2 where:

L1 = {t | t∈L and t=τ(‘instanceOf’,X,Y} where X=‘Construct’, ‘Mark’, ‘Lexical’, ‘Connector’,
‘Conformance’, or ‘Generalization’}

L2 = {u | u,t∈L and t=τ(‘instanceOf’,X,Y) where Y=’Connector’, ‘Conformance’, or ‘Generalization’ and
u=τ(P,X,Z)}.

ExtractSchema : L → L′ L′ = L1 ∪ L2 where:

L1 = {v | t,u,v∈L and t=τ(‘instanceOf’,P,’Conformance’} and u=τ(P,Y,Z) and v=τ(‘instanceOf’,Z,X)}

L2 = {u | u ∈L and t1,t2∈ L1 and t1=τ(‘instanceOf’,S1,X) and t2=τ(‘instanceOf’,S2,Y) and u=τ(P,S1,S2)}.

guid → x A 0-ary Skolem function that returns a unique identifier x.

layer to contain the model of the target layer. By using
the extract model function, we can add the appropriate
triples of the target layer to the superimposed layer
returned by the conversion function.

Similarly, the extract schema function gathers
schema information from the target layer. Extract schema
returns the construct instances that are at the schema-ends
of conformance connectors along with the connections
between the schema construct instances. (Note that this
approach works for cases where there is only one level of
schema and instance). To add target model and schema
information to the result of an inter-schema mapping we
would use the extract model and schema functions as
follows: conversion(M, Ls, Lt) ∪ extractModel(Lt) ∪
extractSchema(Lt), where Lt is the target layer, Ls the
source layer, and the result of the clause is a new
superimposed layer.

5.2 Inter-Model, Inter-Schema, and Model-to-Schema
Mappings

Figure 11 illustrates three types of mappings. Each
example shows information from a source layer being
mapped to a target layer to convert data from the source
layer into data that conforms to the target layer. Although
we focus on conversion, it is also possible to perform
integration between superimposed layers. Integration
goes a step further by combining the source and target
data. The mapping rules can be used to provide

integration at both the schema and instance levels.
Figure 11(a) is an inter-model mapping in which the

schema- and instance-level data of the source
superimposed-layer are converted to valid schema- and
instance-level data of the target superimposed-layer.
Figure 12 shows an inter-model mapping between the
Structured-Bundle model and the Structured-Map model.
The goal of the mapping is to allow SLIMPad data to be
used with CARTE.

Structured-Bundle
Model

Templates

Bundles, Scraps,
and Marks

Structured-Map
Model

Type Definitions

Topic, Relation,
and Anchors

source target
mapping

converted

converted

Figure 12. An inter-model mapping between the Structured
Bundles and Structured Maps.

Figure 13 illustrates four mapping rules between the
Structured-Bundle model (shown as the source) and the
Structured-Map model (shown as the target) using the
UML model representation. The first mapping rule,
Figure 13(a), specifies a mapping between the Bundle
Template schema-construct and the Topic Type schema-
construct. That is, all Bundle Templates in the source

BundleTemplate TopicType

a. Construct to Construct

source target

mapping Bundle TopicInstance

b. Instance to Schema Construct

mapping

Bundle TopicInstance

c. Connector to Connector

mapping

BundleTemplate TopicType

topic_instOfbundle_instOf

AbstractTemplate

d. Connector to Construct

PadTemplate BundleTemplate nested
Template

parent
Template

TopicType

TopicRelType

relType : String

topic
Type1

topic
Type1

mapping

Figure 13. Inter-model mappings from Structured Bundles to Structured Maps represented visually.

source target

source target
source target

Model1

Schema1

Instances (with
Marks)

Model2

Schema2

Instances (with
Marks)

Model2

Schema2’

Instances (with
Marks)

Model3

Schema3

Instances (with
Marks)

converted

mapped

converted

mapped

converted

converted

converted

mapped

a. b. c.

Figure 11. Three mappings: (a) inter-model, (b) inter-schema, and (c) model-to-schema.

superimposed-layer will be converted to Topic Types in
the resulting superimposed layer. Figure 13(b) is a
mapping between Bundles and Topic Instances, which are
both at the instance-level. Figure 13(c) is a mapping
between two conformance connectors: bundle_instOf and
topic_instOf. The mapping states that each bundle_instOf
relationship in the source-layer should be converted to a
topic_instOf relationship in the target-layer. Finally, the
mapping in Figure 13(d) shows the nestedTemplate
connector being mapped to a Topic Relationship Type.
As the data is converted, a new Topic Relationship Type
will be created with the relType attribute set to the string
“nested_template,” the domain of the nestedTemplate
connector assigned to the range of topicType1, and the
range of the NestedTemplate connector assigned to the
range of topicType2.

Figure 14 shows the mapping rules that specify the
mappings of Figure 13. We use the constant ‘source’ to
represent the Structured Bundles superimposed layer, the
constant ‘target’ to represent the Structured Maps
superimposed layer, and the constant ‘result’ to represent
the new superimposed layer that is created from the
mappings. (See [10] for a more detailed exposition of the
mappings).

 Figure 11(b) is an inter-schema mapping in which
the source and target models are the same, but two distinct
schemas are mapped so that the source instance-level data
can be converted to data that conforms to the target
schema. Figure 15 illustrates an inter-schema mapping
using the XML model. The source is an animal taxonomy
DTD containing Element Types such as genus and
species. The target is a bookmark list DTD with Element
Types such as folder and bookmark. One reason to
perform this type of mapping is to reuse existing tools for
browsing bookmark lists on taxonomies.

Figure 16 demonstrates three rules that are used to
perform part of the mapping of Figure 15. The first rule

takes content that is designated as genus (e.g., “homos”)
and maps it to a folder (titled “homos”). Similarly,
species content (e.g., “sapiens”) is mapped as a nested
folder (titled “sapiens”) within a genus folder.

The last mapping of Figure 11, shown as Figure
11(c), is called a model-to-schema mapping. Here, the
model of the source layer is mapped to schema-level data
in the target layer, which allows the schema- and instance-
level data of the source to be converted to valid instance-
level data in the target. Figure 17 shows a model-to-
schema mapping in which the Structured-Map model is
mapped to an XML DTD. The Structured-Map schema-
level and instance-level data are converted to an XML
document. The benefit of doing this mapping is to use
XML as the interchange format for Topic Maps.

XML

Animal Taxonomy
DTD

XML Taxonomy
Documents

XML

Bookmark List
DTD

XML Bookmark
Lists

source target

mapping

converted

Figure 15. An example of a schema-to-schema mapping
between two DTDs.

To specify the mapping, we could map a Topic Instance
construct in the Structured-Map model to an Element
Type in an XML DTD with an Attribute Type titled
“name”. Then, for a particular Topic Instance (e.g.,
“painter”), the conversion would result in the XML tag
<topic name=”painter”/> . Figure 18 shows two
rules to perform the mapping. Notice that the first rule
has an empty left-hand side. Rules without left-hand sides
automatically match, which means that the right-hand side
triples are always added.

Figure 14. Inter-model mappings from Structured Bundles to Structured Maps.

a. Construct to Construct
S(‘source’, τ(‘instanceOf’, X, ‘BundleTemplate’))
⇒
S(‘result’, τ(‘instanceOf’, X, ‘TopicType’))

c. Connector to Connector
S(‘source’, τ(‘bundle_instOf’, X, Y)),
S(‘result’, τ(‘instanceOf’, X, ‘TopicInstance’)),
S(‘result’, τ(‘instanceOf’, Y, ‘TopicType’))
⇒
S(‘result’, τ(‘topic_instOf’, X, Y))

b. Instance to Schema Construct
S(‘source’, τ(‘instanceOf’, X, ‘Bundle’))
⇒
S(‘result’, τ(‘instanceOf’, X, ‘TopicType’))

d. Connector to Construct
S(‘source’, τ(‘nestedTemplate’, P, B)),
S(‘result’, τ(‘instanceOf’, P, ‘TopicType’)),
S(‘result’, τ(‘instanceOf’, B, ‘TopicType’)),
X = guid()
⇒
S(‘result’, τ(‘instanceOf’, X, ‘TopicRelType’)),
S(‘result’, τ(‘relType’, X, ‘nested_template’)),
S(‘result’, τ(‘topicType1’, X, P)),
S(‘result’, τ(‘topicType2’, X, B))

Structured-Map
Model

Type Definitions

Structured Maps
Instances

XML

XML
DTD

XML
Document

source target

mapping

converted

converted

Figure 17. Example of a model-to-schema mapping.

6 Comparison of Related Work

A number of metamodels have been developed (see
Atzeni and Torlone [1-4], Barsalou and Gangopadhyay
[5], McBrien and Poulovassilis [17], and the Meta Object
Facility [18]) with the primary focus on supporting
interoperability. Our metamodel is different from these

approaches because we do not require model-first nor
schema-first definitions. Rather, we support the
independent specification of model, schema, and instance
and we permit the application to explicitly specify the
relationship between schema and instance. Metamodels
for describing both database data models [1-4, 5, 17] and
object-oriented models [18-19] require that instances be
the extension of schema in which schema must be defined
first. By not enforcing schema-first definitions and
allowing instances to be independent of schema, our
metamodel is able to accurately define superimposed
models such as XML and Topic Maps. Additionally, by
explicitly representing the relationship between schema
and instance we can specify more complex situations such
as multiple levels of schema-instance relationships.

Another major difference between our approach and
other metamodel approaches is that we employ a single,
generic representation scheme for model, schema, and

Source Schema

 τ(‘instanceOf’, ‘genus_type’, ‘ElementType’)
 τ(‘elementTypeName’, ‘genus_type’, ‘genus’)
 τ(‘instanceOf’, ‘species_type’, ‘ElementType’)
 τ(‘elementTypeName’, ‘species_type’, ‘species’)
 τ(‘nestedElement’, ‘genus_type’, ‘species_type’)

Target Schema

 τ(‘instanceOf’, ‘folder_type’, ‘ElementType’)
 τ(‘elementTypeName’, ‘folder_type’, ‘folder’)
 τ(‘nestedElement’, ‘folder_type’, ‘folder_type’)

Mapping Rules

Figure 16. Example of a schema-to-schema mapping between two XML model schemas.

S(‘source’, τ(‘elemInstOf’, X, ‘genus_type’))
⇒
S(‘result’, τ (‘elemInstOf’, X, folder_type))

S(‘source’, τ(‘elemInstOf’, X, ‘species_type’))
⇒
S(‘result’, τ(‘elemInstOf’, X, ‘folder_type’))

S(‘source’, τ(‘nestedElement’, X, Y))
⇒
S(‘result’, τ(‘nestedElement’, X, Y))

Source Model

 S(‘source’, τ(‘instanceOf’, ‘TopicInstance’, ‘Construct’))
 S(‘source’, τ(‘instanceOf’, ‘title’, ‘Connector’))
 S(‘source’, τ(‘instanceOf’, ‘t1’, ‘TopicInstance’))
 S(‘source’, τ(‘title’, ‘t1’, ‘painter’))

Mapping Rule:

 ⇒
 S(‘result’, τ(‘instanceOf’, ‘topic_inst’, ‘ElementType’)),
 S(‘result’, τ(‘elemTypeName’, ‘topic_inst’, ‘topic’)),
 S(‘result’, τ(‘instanceOf,’ ‘topicInst_att’, ‘AttributeType’)),
 S(‘result’, τ(‘attTypeName’, ‘topicInst_att’, ‘name’)),
 S(‘result’, τ(‘attTypeOf’, ‘topic_inst’, ‘topicInst_att’))

 S(‘source’, τ(‘instanceOf’, X, ‘TopicInstance’)),
 S(‘source’, τ(‘title’, X, Y))
 ⇒
 S(‘target’, τ(‘instanceOf’, X, ‘Element’)),
 S(‘target’, τ(‘tagName’, X, ‘topic’)),
 S(‘target’, τ(‘elemInstOf’, X, ‘topic_inst’)),
 Z = guid(),
 S(‘target’, τ(‘instanceOf’, Z, ‘Attribute’)),
 S(‘target’, τ(‘attName’, Z, ‘name’)),
 S(‘target’, τ(‘attInstOf’, Z, ‘topicInst_Att’)),
 S(‘target’, τ(‘attributeOf’, X, Z)),
 S(‘target’, τ(‘attValue’, Z, Y))

Figure 18. A model-to-schema mapping rule between the Structured-Map model and XML.

Target Model

 S(‘target’, τ(‘instanceOf’, ‘ElementType’, ‘Construct’))
 S(‘target’, τ(‘instanceOf’, ‘AttributeType’, ‘Construct’))
 S(‘target’, τ(‘instanceOf’, ‘elementTypeName’, ‘Connector’))
 S(‘target’, τ(‘instanceOf’, ‘attTypeOf’, ‘Connector’))
 S(‘target’, τ(‘instanceOf’, ‘attTypeName’, ‘Connector’))
 S(‘target’, τ(‘instanceOf’, ‘Element’, ‘Construct))
 S(‘target’, τ(‘instanceOf’, ‘Attribute’, ‘Construct’))
 S(‘target’, τ(‘instanceOf’, ‘elemInstOf’, ‘Conformance’))
 S(‘target’, τ(‘instanceOf’, ‘attInstOf’, ‘Conformance’))
 S(‘target’, τ(‘instanceOf’, ‘tagName’, ‘Connector’))
 S(‘target’, τ(‘instanceOf’, ‘attName’, ‘Connector’))
 S(‘target’, τ(‘instanceOf’, ‘attValue’, ‘Connector’))
 S(‘target’, τ(‘instanceOf’, ‘attributeOf’, ‘Connector’))

instance data. The representation scheme allows
mappings to be defined in a uniform way between models
(inter-model), schema (inter-schema), model and schema
(model-to-schema), and any mixture of the three levels.
McBrien and Poulovassilis use the Hypergraph Data
Model (HDM) to store schemas defined in diverse
models. Their primary goal is to perform inter-model
transformations, which are specified using first-order logic
expressions, to map between semantically equivalent
schemas. They also specify transformations from the
extent of a schema in one model (e.g., the relational
model) to the extent of a similar schema in a different
model (e.g., the entity-relationship model). However,
both types of transformations are considerably more
difficult to specify, when compared to our mapping rules,
because they do not explicitly represent models or
instances using the HDM. Atzeni and Torlone employ
procedural inter-model mapping specifications. Similar to
our approach, their specifications can be used to
implement the conversions. However, they require
complete mappings between models, whereas we allow
partial mappings to allow for a wider range of cases, and
they do not provide support for other types of mappings
(e.g., inter-schema or model-to-schema mappings).

The Meta Object Facility (MOF) defines an
architecture that uses a metamodel to enable the sharing of
information between object-oriented applications.
Currently, the main application of the MOF architecture is
to store and interchange UML class diagrams between
analysis and design tools. The MOF uses the XML
Metadata Interchange (XMI) as a representation scheme
for exchange. XMI prescribes a method to generate an
XML DTD to represent a model. (Note that the XML
DTD is generated by hand and UML is the only version
currently available). XML documents that conform to the
DTD represent schema-level data. Unlike our approach,
there is no way to represent instance-level data. Also,
MOF does not provide any support for mapping between
models. The Microsoft Repository [6-7] is similar to the
MOF, except it does not define a metamodel. Instead, a
global model called the Open Information Model is used
to define schemas. However, our approach provides a
mechanism to represent various models precisely to
leverage available tools that are based on a particular
model.

7 Conclusions and Future Work

The metamodel and representation as well as the mapping
approach presented here have been deployed in a project
that provides additional indexing for a base of XML
documents. By first parsing the base documents using a
standard XML parser, we generate the equivalent triples
that represent the XML. A mapping is then used to
automatically generate an equivalent Topic Map, based on

the XML. The resulting Topic Map is then presented to
users to navigate and search through items of interest in
the XML document base.

We are also developing generic technology to
manage information, e.g., to store, create, manipulate, and
retrieve information, based on our representation. Our
goal is to allow an application developer to specify a
model or model-schema combination from which we can
automatically generate application-specific APIs to store
and manage superimposed information. Thus, developers
aren’t required to use the generic representation directly
(instead they can use a tailored API) and still have the
benefits of generic representation beneath the hood [14].
We have also successfully integrated our superimposed
information management approach into both CARTE and
SLIMPad, which allows the two applications to share
information via mappings.

The contributions of our work are listed here:

1. The Superimposed-Information Metamodel: A
unique metamodel for describing multiple
superimposed models, which allows for the explicit
specification of the relationship between schema
and instance and allows marks to be placed
anywhere within a model.

2. A Generic Representation Scheme for
Superimposed Information: A single
representation schema, based on RDF, that
leverages the superimposed information
metamodel, to uniformly represents model, schema,
and instance data and can be used generically by
diverse superimposed applications.

3. Visual Superimposed-Model Definition: The
ability to define superimposed models visually by
using a subset of the UML. We find that being able
to define and view models visually is a benefit, and
in addition, model engineers can leverage a number
of existing tools that support UML.

4. Information Sharing: Using a common
representation format for superimposed information
makes it possible for applications to dynamically
share data.

5. Superimposed-Layer Mappings: A formal
method, based on production rules, to uniformly
specify superimposed-layer mappings. We allow
partial mappings as well as mappings between
multiple levels of superimposed information.

Acknowledgments

The authors would like to thank David Maier for his
helpful discussions, contributions, and comments on this

work. We would also like to acknowledge the other
SLIM project members Longxing Deng and Mathew
Weaver for their contributions to this research, including
their work on the development of the SLIMPad
application.

References

[1] Paolo Atzeni and Riccardo Torlone. A metamodel
approach for the management of multiple models and the
translation of schemes. Information Systems 18(6), pages
349-362, September 1993.

[2] Paolo Atzeni and Riccardo Torlone. MDM: a multiple-
data-model tool for the management of heterogeneous
database schemes. ACM SIGMOD Conference, Tucson,
Arizona, May 13-15, 1997.

[3] Paolo Atzeni and Riccardo Torlone. Management of
multiple models in an extensible database design tool. 5th

International Conference on Extending Database
Technology EDBT ’95, Lecture Notes in Computer Science
Volume 1057, Avignon, France, March 25-29, 1996.

[4] P. Atzeni and R. Torlone, Schema translation between
heterogeneous data models in a lattice framework. 6th IFIP
TC-2 Working Conference on Database Semantics (DS-6),
Atlanta, Georgia, May 30-June 2, 1995.

[5] Thierry Barsalou and Dipayan Gangopadhyay. M(DM): an
open framework for interoperation of multimodel
multidatabase systems. Eighth International Conference on
Data Engineering ICDE’92, Tempe, Arizona, February 3-
7, 1992.

[6] Philip A. Bernstein and Thomas Bergstraesser. Meta-data
support for data transformations using Microsoft
Repository. IEEE Data Engineering Bulletin 22(1), pages
9-14, March 1999.

[7] Philip A. Bernstein, Brian Harry, Paul Sanders, David
Shutt, and Jason Zander. The Microsoft Repository.
Proceedings of the 23rd International Conference on Very
Large Databases VLDB ’97, Athens, Greece, August 25-
27, 1997.

[8] Michel Biezunski, Martin Bryan, and Steve Newcomb,
editors. ISO/IEC 13250, Topic Maps,
URL:http://www.ornl.gov/sgml/sc34/document/0058.htm.

[9] Tim Bray, Jean Paoli, and C.M. Sperger-McQueen, editors.
Extensible Markup Language (XML) 1.0, W3C
Recommendation 10-February-1998,
URL:http://www.w3.org/TR/REC-xml.

[10] Shawn Bowers. A generic approach for representing
model-based superimposed information. Oregon Graduate
Institute of Science and Technology, Technical Report
Number CSE-00-008, May 1, 2000.

[11] Dan Brickley and R.V. Guha, editors. Resource
Description Framework Schema (RDFS), W3C Proposed
Recommendation 03 March 1999,
URL:http://www.w3.org/TR/PR-rdf-schema/.

[12] Lois Delcambre, David Maier, Radhika Reddy, and Lougie
Anderson. Structured maps: modeling explicit semantics
over a universe of information. International Journal on
Digital Libraries 1(1), pages 20-35, 1997.

[13] Lois Delcambre and David Maier. Models for
superimposed information. Advances in Conceptual
Modeling ER ’99, Lecture Notes in Computer Science
Volume 1727, pages 264-280, Paris, France, November 15-
18, 1999.

[14] Lois Delcambre, David Maier, Shawn Bowers, Longxing
Deng, Mathew Weaver, Paul Gorman, Joan Ash, Mary
Lavelle, and Jason A. Lyman. Bundles in captivity: an
application of superimposed information. Oregon Graduate
Institute of Science and Technology, Technical Report
Number CSE-00-010, June, 2000.

[15] Ora Lassila and Ralph R. Swick, editors. Resource
Description Framework (RDF) Model and Syntax
Specification, W3C Recommendation 22 February 1999,
URL:http://www.w3.org/TR/REC-rdf-syntax.

[16] David Maier and Lois Declambre. Superimposed
information for the Internet. ACM SIGMOD Workshop on
The Web and Databases WebDB’99, pages 1-9,
Philadelphia, Pennsylvania, June 3-4, 1999.

[17] Peter McBrien and Alexandra Poulovassilis. A uniform
approach to inter-model transformations. 11th International
Conference on Advanced Information Systems Engineering
CAiSE’99, Lecture Notes in Computer Science Volume
1626, pages 333-348, Heidelberg, Germany, June 14-18,
1999.

[18] Object Management Group. Meta Object Facility (MOF)
Specification. OMB Document ad/99-09-04.
URL:http://www.omg.org/cgi-bin/doc?ad/99-09-04.

[19] James Rumbaugh, Ivar Jacobson, and Grady Booch. The
Unified Modeling Language Reference Manual. Addison
Wesley, 1999.

[20] Tracking footprints through an information space:
leveraging the document selections of expert problem
solvers. NSF Grant IIS-9817492. Digital Libraries Phase 2.
Paul Gorman, Lois Delcambre, and David Maier.

