
Actor-Oriented Design of Scientific Workflows�

Shawn Bowers1 and Bertram Ludäscher2

1 UC Davis Genome Center
2 Department of Computer Science, University of California, Davis

{sbowers, ludaesch}@ucdavis.edu

Abstract. Scientific workflows are becoming increasingly important as a unify-
ing mechanism for interlinking scientific data management, analysis, simulation,
and visualization tasks. Scientific workflow systems are problem-solving envi-
ronments, supporting scientists in the creation and execution of scientific work-
flows. While current systems permit the creation of executable workflows, con-
ceptual modeling and design of scientific workflows has largely been neglected.
Unlike business workflows, scientific workflows are typically highly data-centric
naturally leading to dataflow-oriented modeling approaches. We first develop a
formal model for scientific workflows based on an actor-oriented modeling and
design approach, originally developed for studying models of complex concurrent
systems. Actor-oriented modeling separates two modeling concerns: component
communication (dataflow) and overall workflow coordination (orchestration). We
then extend our framework by introducing a novel hybrid type system, separat-
ing further the concerns of conventional data modeling (structural data type) and
conceptual modeling (semantic type). In our approach, semantic and structural
mismatches can be handled independently or simultaneously, and via different
types of adapters, giving rise to new methods of scientific workflow design.

1 Introduction

Scientific workflows are quickly becoming recognized as an important unifying mech-
anism to combine scientific data management, analysis, simulation, and visualization
tasks. Scientific workflows often exhibit particular traits, e.g., they can be data-
intensive, compute-intensive, analysis-intensive, and visualization-intensive, thus cover-
ing a wide range of applications from low-level “plumbing workflows” of interest to Grid
engineers, to high-level “knowledge discovery workflows” for scientists [11]. Conse-
quently, workflows steps can have very different granularities and may be implemented
as shell scripts, web services, local application calls, or as complex subworkflows.

A scientific workflow system is a problem-solving environment that aims at simpli-
fying the task of “gluing” these steps together to form executable data management and
analysis pipelines. While current systems permit the creation of executable workflows,
conceptual modeling and design of scientific workflows has been largely neglected. Un-
like business workflows, scientific workflows are typically highly data-centric, naturally
leading to dataflow-oriented modeling approaches, while business workflow modeling

� This work supported in part by NSF/ITR 0225673 (GEON), NSF/ITR 0225676 (SEEK),
NIH/NCRR 1R24 RR019701-01 (BIRN-CC), and DOE DE-FC02-01ER25486 (SDM).

L. Delcambre et al. (Eds.): ER 2005, LNCS 3716, pp. 369–384, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

370 S. Bowers and B. Ludäscher

is dominated by control, event, and task-oriented approaches [17], making them less
suitable for the modeling challenges of scientific workflows.

This paper addresses three important problems in scientific-workflow design and
engineering. First, in existing systems it is often unclear what constitutes a scientific
workflow, and there are few if any abstract models available to describe scientific work-
flows. (By abstract model, we mean a model for scientific workflows analogous to data
models in database management.) Second, existing systems do not support the end-to-
end development of scientific workflows, in particular, design methods and frameworks
for the early stages of conceptual design do not exist. And third, in scientific workflow
systems such as KEPLER [11] that aim at providing a unified environment where work-
flows and their components can be shared and reused, mechanisms do not exist that
support the discovery, reuse, and adaptation of existing workflows and components.

To address these issues, we first develop a formal model for scientific workflows
(Section 3) based on an actor-oriented modeling approach, originally developed for
studying complex concurrent systems [9]. A benefit of actor-oriented modeling is that
it separates two distinct modeling concerns: component communication (dataflow) and
overall workflow coordination (a.k.a. orchestration). We then extend this framework
by introducing a novel hybrid type system, separating further the concerns of conven-
tional data modeling (structural data type) and conceptual modeling (semantic type).
The separation of types facilitates the independent validation of structural and seman-
tic type constraints and offers a number of benefits for scientific workflow design and
component reuse. Structural and semantic types can also be explicitely linked in our ap-
proach, using special (hybridization) constraints. These constraints can be exploited in
various ways, e.g., to further propagate and refine known (structural or semantic) types
in scientific workflows, or to infer (partial) structural mappings between structurally
incompatible (but semantically compatible) workflow components.

Based on our formal model, we also introduce a number of basic modeling primi-
tives that a workflow designer can apply to evolve a formal scientific workflow design in
a stepwise, controlled manner (Section 4). The different modeling primitives give rise
to distinct design strategies, including task-driven vs. data-driven, structure-driven vs.
semantics-driven, and top-down vs. bottom-up. Two important design primitives are ac-
tor replacement and adapter insertion. Both primitives, when combined with the hybrid
type system, yield powerful new component discovery and adaptation mechanisms.

2 Preliminaries: Business vs. Scientific Workflows and KEPLER

The characteristics and requirements of scientific workflows partially overlap those of
business workflows. Historically, business workflows have roots going back to office
automation systems, and more recently gained momentum in the form of business pro-
cess modeling and business process engineering [2,16,18]. Today we see influences of
business workflow standards in web-service choreography standards. Examples include
the Business Process Execution Language for Web Services (BPEL4WS)1, a merger

1 http://www-128.ibm.com/developerworks/library/specification/
ws-bpel/

http://www-128.ibm.com/developerworks/library/specification/
ws-bpel/

Actor-Oriented Design of Scientific Workflows 371

of IBM’s WSFL and Microsoft’s XLANG, as well as ontology-based web-service ap-
proaches such as OWL-S2. When analyzing the underlying design principles and exe-
cution models of business workflow approaches, a focus on control-flow patterns and
events becomes apparent, whereas dataflow is often a secondary issue.

Scientific workflow systems, on the other hand, tend to have execution models that
are much more dataflow-oriented. Examples include academic systems such as KE-
PLER [11], Taverna [15], and Triana [12], and commercial systems such as Inforsense’s
DiscoveryNet, Scitegic’s Pipeline-Pilot, and National Instrument’s LabView. With re-
spect to their modeling paradigm and workflow execution models, these systems are
closer to visual dataflow programming languages for scientific data and services than
to the more control-flow and task-oriented business workflow systems, or to their early
scientific workflow predecessors [13,1].

The difference between dataflow and control-flow orientation can also be observed
in the underlying formalisms. For example, visualizations of business workflows often
resemble flowcharts, state transition diagrams, or UML activity diagrams, all of which
emphasize events and control-flow over dataflow. Formal analysis of workflows usually
involves studying their control-flow patterns [8,5]. Conversely, the underlying execu-
tion model of current scientific workflow systems usually resembles dataflow process
networks [10], having traditional application areas in digital signal processing and elec-
trical engineering. Dataflow-oriented approaches are applicable at very different levels
of granularity, from low-level CPU operations found in processor architectures, over
embedded systems, to high-level programming paradigms such as flow-based program-
ming [14]. Scientific workflow systems and visualization pipeline systems can also be
seen as dataflow-oriented problem-solving environments [7] that scientists use to ana-
lyze and visualize their data.

Actor-Oriented Workflow Modeling in KEPLER. The KEPLER scientific work-
flow system is an open-source application, with contributing members from various
application-oriented research projects. KEPLER aims at developing generic solutions
to the process and application-integration challenges of scientific workflows. Figure 1
shows a snapshot of KEPLER running a bioinformatics scientific workflow.

KEPLER extends the PTOLEMY II system, developed for modeling heterogeneous
and concurrent systems and engineering applications, to support scientific workflows.
In KEPLER, users develop workflows by selecting appropriate components called “ac-
tors” (e.g., from actor libraries or by wrapping web services as actors) and placing them
on the design canvas, after which they can be “wired” together to form the desired
workflow graph. As shown in Figure 1, workflows can also be hierarchically structured.
Actors have input ports and output ports that provide the communication interface to
other actors. Control-flow elements such as branching and loops are also supported.
A unique feature of PTOLEMY II (and thus of KEPLER) is that the overall execution
and component interaction semantics of a workflow is not buried inside the compo-
nents themselves, but rather factored out into a separate component called a director.
PTOLEMY II supports a large number of different directors, each one corresponding to
a unique model of computation. Taken together, workflows, actors, ports, connections,
and directors represent the basic building blocks of actor-oriented modeling.

2 http://www.daml.org/services/owl-s/

http://www.daml.org/services/owl-s/

372 S. Bowers and B. Ludäscher

Fig. 1. A bioinformatics workflow in KEPLER: the composite actor (center) contains a nested
subworkflow (upper right); workflow steps include remote service invocation and data transfor-
mation; and the execution model is enforced by a director (green box)

3 A Formal Model of Actor-Oriented Scientific Workflows

This section further defines actor-oriented modeling and its application to scientific
workflows. We describe a formal model for scientific workflows and a rich typing sys-
tem for workflows and workflow components that considers both structural and seman-
tic types. We also briefly describe the use of directors for specifying workflow com-
putation models, which simplifies the task of defining workflows within KEPLER and,
along with the typing system, can facilitate the reuse of workflow components.

3.1 Actor-Oriented Hierarchical Workflow Graphs

Workflow Graphs. An actor-oriented workflow graph W = 〈A,D〉 consists of a set
A of actors representing components or tasks and a set of dataflow connections D con-
necting actors via data ports. Actors have well defined interfaces and generally speak-
ing, unlike a software agent, are passive entities that given some input data, produce
output data (according to their interface). Actors communicate by passing data tokens
between their ports.

Ports. Each actor A ∈ A has an associated set ports(A) of data ports, where each
p ∈ ports(A) is either an input or output, i.e., ports(A) = in(A) ·∪ out(A) is a disjoint
union of input ports and output ports, respectively. We can think of ports(A) as the
input/output signature ΣA of A, denoted A :: in(A) −→ out(A).3

3 We may also distinguish par(A) ⊆ in(A), the parameter ports of A, distinct from “regular”
data input ports, and used to model different actor “configurations”.

Actor-Oriented Design of Scientific Workflows 373

Dataflow Connections. Let in(W) =
⋃

A∈A in(A) be the set of all of input ports of
W ; the sets out(W) and ports(W) are defined similarly. A dataflow connection d ∈ D
is a directed hyperedge d = 〈o, i〉, simultaneously connecting n output ports o =
{o1, . . . , on} ⊆ out(W) with m input ports i = {i1, . . . , im} ⊆ in(W). Intuitively, we
can think of d = 〈o, i〉 as consisting of a merge step merge(d) = o that combines data
tokens from the output ports o, and a distribute step distrib(d) = i that distributes the
merged tokens to the input ports i.4

A dataflow connection d = 〈{o1}, {i1}〉 between a single output port and a single

input port corresponds to a directed edge o1
d−→ i1. In general, however, we represent

d as an auxiliary connection node having n incoming edges from all output ports o ∈ o
and m outgoing edges to all input ports i ∈ i. Dataflow connection d ∈ D is called
well-oriented, if it connects at least one output and one input port. In this way, a directed
dataflow dependency between ports is induced.

Workflow Abstraction and Refinement. Abstraction and refinement are crucial mod-
eling primitives. When abstracting a workflow W , we would like to “collapse” it into a
single, composite actor AW (hiding W “inside”). Conversely, we might want to refine
an actor A by further specifying it via a subworkflow WA, thereby turning A into a
composite actor with WA “inside” (cf. Figures 1 and 3). In both cases, we need to make
sure that the i/o-signature ΣA of the composite actor matches the i/o-signature ΣW of
the contained subworkflow.

Let W = 〈A,D〉 be a workflow. The free ports of W are all ports that do not
participate in any data connection, i.e., freeports(W) := {p | for all d ∈ D : p /∈ d}. A
workflow designer might not want to expose all free ports externally when abstracting
W into a composite actor AW . Instead the i/o-signature is often limited to a subset ΣW

of distinguished ports.

Composite Actors. A composite actor AW is a pair 〈W, ΣW 〉 comprising a subwork-
flow W and a set of distinguished ports ΣW ⊆ freeports(W), the i/o-signature of W .
We require that the i/o-signatures of the subworkflow W and of the composite actor
AW containing W match, i.e., ΣW = ports(AW).

Hierarchical Workflow Graphs. A hierarchical workflow W = 〈A,D, Σ〉 is defined
like a workflow graph, with the difference that actors might be composite. Inductively,
subworkflows can be hierarchical, so that any level of nesting can be modeled. For
uniformity, we also include the distinguished i/o-signature Σ of the top-level workflow.

3.2 Models of Computation

Following the paradigm of separation of concerns, the actor-oriented workflow graphs
introduced above only specify communication links (dataflow) between components or
tasks (represented by actors), and—in the case of hierarchical workflows—their nesting
structure via composite actors. However, the workflow execution semantics or model of

4 The semantics of merging and distributing tokens through dataflow connections is a separate
concern that is deliberately left unspecified. Instead, this execution semantics is defined sepa-
rately via directors.

374 S. Bowers and B. Ludäscher

computation is deliberately left unspecified. In PTOLEMY II a new modeling primitive
called a director is used to represent the particular choice of model of computation [9].

Thus, we can extend our definition of workflow (graph) W to include a model of
computation by means of a director M , i.e., W = 〈A,D, Σ, M〉. In the case of the
unspecified merge/distribute semantics of a data connection node d = 〈o, i〉 above, a
director M may prescribe, e.g., the merge semantics to be one of the following: non-
deterministic (the token arrival order is unspecified by M); time-dependent and deter-
ministic (tokens are merged according to their timestamps); or time-independent and
deterministic (e.g., “round robin” merging of tokens, or “zipping” together tokens from
all input ports, creating a single record token). Similarly, different distribution seman-
tics may be prescribed by M : deterministic copy (replicate each incoming token on all
outputs); deterministic round robin (forward a token to alternating outputs); or nonde-
terministic round robin (randomly choose an output port).

More generally, a model of computation specifies all inter-actor communication
behavior, separating the concern of orchestration (director) from the concern of actor
execution. The PTOLEMY II system comes with a number of directors including:

– Synchronous Dataflow (SDF): Actors communicate through data connections cor-
responding to queues and send or receive a fixed number of tokens each time
they are fired. Actors are fired according to a predetermined static schedule. Syn-
chronous dataflow models are highly analyzable and have been used to describe
hardware and software systems.

– Process Network (PN): A generalisation of SDF in which each actor executes as
a separate thread or process, and where data connections represent queues of un-
bounded size. Thus actors can always write to output ports, but may get suspended
(blocked) on input ports witout a sufficient number of data tokens. The PN model
of computation is closely related to the Kahn/MacQueen semantics of process net-
works.

– Continuous Time (CT): Actors communicate through data connections, which rep-
resent the value of a continuous time signal at a particular point in time. At each
time point, actors compute their output based on their previous input and the ten-
tative input at the current time, until the system stabilizes. When combined with
actors that perform numerical integration with good convergence behavior, such
models are conceptually similar to ordinary differential equations and are often
used to model physical processes.

– Discrete Event (DE): Actors communicate through a queue of events in time.
Events are processed in global time order, and in response to an event an actor is
permitted to emit events at the present or in the future, but not in the past. Discrete
event models are widely used to model asynchronous circuits and instantaneous
reactions in physical systems.

3.3 Structural and Semantic Typing of Scientific Workflows

The formal model described above separates the concerns of component communica-
tion (dataflow connections) from the overall model of computation (a.k.a. orchestra-
tion), imposed by the director. This separation achieves a form of behavioral polymor-
phism [9], resulting in more reusable actor components and subworkflows. In a sense,

Actor-Oriented Design of Scientific Workflows 375

the actor-oriented modeling approach “factors out” the concern of component coordi-
nation and centralizes it at the director.

As mentioned in Section 2, scientific workflows are typically data-oriented. The
modeling primitives so far, however, have been agnostic about data types. We introduce
a novel hybrid type system for modeling scientific data that separates structural data
types and semantic data types, but allows them to be explicitly linked using hybridiza-
tion constraints.

Structural Types. Let S be a language for describing structural data types. For exam-
ple, S may be one of XML Schema, XML DTD, PTOLEMY II’s token type system, or
any other suitable data model or type system for describing structural aspects of data
such as the relational model, an object-oriented data model, or a programming language
type system (e.g., a polymorphic Hindley-Milner system).

Any port p ∈ ports(W) may have a structural data type s = dt(p), where s ∈ S is
a type expression constraining the allowed set of values that the port p can accept (for an
input port p ∈ in(W)) or produce (for an output port p ∈ out(W)). When using XML
Schema as S, e.g., the structural data type of a port is a concrete XML Schema type
such as xsd:date or any user-defined type. If S is the relational model, s describes
the tuple or table type of p.

Semantic Types. Let O be a language for expressing semantic types. By this we mean,
in particular, suitable logics for expressing ontologies. For example, O might be a de-
scription logic ontology (expressed, e.g., in OWL-DL).

Any port p ∈ ports(W) may have a port semantic type C = st(p), where C denotes
a concept expression over O. For example, C1 = st(p1) might be defined as

MEASUREMENT � ∀ITEMMEASURED.SPECIESOCCURRENCE (C1)

indicating that the port p1 accepts (or produces) data tokens that are measurements
where the measured item is a species occurrence (as opposed to, e.g., a temperature).5

In addition to port semantic types, any actor A ∈ A may also be associated with an
actor semantic type, categorizing the overall function or purpose of A.6

Well-Typed Workflows. Structural and semantic types facilitate the design and imple-
mentation of workflows by constraining the possible values and interpretations of data
in a scientific workflow W . Another advantage is that the scientific workflow system
can validate data connections. For example, if the workflow designer connects two ports

p1
d−→ p2 with structural types s1 = dt(p1) and s2 = dt(p2), the system can check

whether this connection satisfies the implied subtype constraint s1 � s2. Similarly,
for semantic types C1 = st(p1) and C2 = st(p2), the system can check whether the
implied concept subsumption C1 � C2 holds.

3.4 Hybrid Types for Scientific Workflows

Structural and semantic types can be considered independently from one another. For
example, a workflow designer might start by modeling semantic types and only later in

5 We note that terms within a concept expression may be from distinct ontologies.
6 Typically the vocabularies chosen for semantic port types and semantic actor types are disjoint,

with the former denoting “objects” and the latter denoting “actions” or “tasks”.

376 S. Bowers and B. Ludäscher

the design process be concerned with structural types (cf. Section 4). Conversely, when
reverse-engineering existing executable workflows, structural types might be given first;
and only later are semantic types introduced for the purpose of facilitating workflow
integration.

Treating semantic and structural types independently offers a number of benefits,
and is primarily motivated by the desire to easily interoperate legacy workflow compo-
nents and components created by independent groups within KEPLER. Decoupling the
structural and semantic aspects of workflow types facilitates the use of more standard
and generic structural data types, while still allowing the specific semantic constraints
of the data to be expressed. Also, one can provide or refine semantic types without
altering the underlying structural type, can search for all components having a partic-
ular semantic type (regardless of the structural type used), and can provide multiple
semantic types for a single component (e.g., drawn from distinct ontologies).

An additional feature of hybrid types is the ability to not only independently con-
sider structural and semantic types, but also interrelate them by a constraint mechanism
called hybridization. Thus, in general, a hybrid type has three (optional) components,
the structural type, the semantic type, and the hybridization constraint.

Formally, let H be a language of (hybridization) constraints, i.e., linking structural
and semantic type information. We express constraints from H in logic, thus requir-
ing that structural and semantic types are expressed in a logic formalism as well. For
structural types this means that for any s ∈ S and any logic query expression e(x̄)
over the set inst(s) of instances of s, we can evaluate e(x̄) on a particular data instance
I ∈ inst(s), returning a list7 of variable bindings [x̄ | I |= e(x̄)], i.e., those parts of I
that satisfy the query e(x̄).8

For example, given the structural (relational) type s1 = r(site, day, spp, occ) and
the above semantic type C1, the following constraint α1 “hybridizes” s1 and C1:

∀xsite, xday, xspp, xocc ∃y : r(xsite, xday, xspp, xocc) −→
MEASUREMENT(y) ∧ ITEMMEASURED(y, xocc)∧
SPECIESOCCURRENCE(xocc)

(α1)

Here, the left-hand side of the implication corresponds to a query expression e(x̄) that
extracts the item being measured from a relational measurement record. The right-hand
side of the implication asserts the existence of a MEASUREMENT y whose ITEMMEA-
SURED xocc is a SPECIESOCCURRENCE. Note that a hybridization constraint such as
α1 can be seen as a “semantic annotation” of the data structure s1 (the left-hand side of
the constraint) with a concept expression (the right-hand side of the constraint).

Exploiting Hybrid Types. By interlinking the otherwise independent structural and
semantic type systems, additional inferences can be made. Consider a data connection

d that connects two ports p1
d−→ p2 having incompatible structural types s1 = dt(p1)

and s2 = dt(p2), i.e., where s1 is not a subtype of s2, denoted s1 	� s2. Given (hy-
bridization) constraints α1 and α2 that map parts of s1 and s2 to a common ontology,
one can indirectly identify structural correspondences between parts of s1 and s2 by

7 We consider variable binding lists to accomodate order-sensitive data models such as XML;
for unordered models a set of bindings can be returned.

8 Here, x̄ = x1, . . . , xn denotes a vector of logical variables.

Actor-Oriented Design of Scientific Workflows 377

“going through the ontology.” Technically, this approach is achieved by a resolution-
based reasoning technique called the chase.9

Exploiting I/O-Constraints. Moreover, for an actor A ∈ A, a set Φio of i/o-constraints
may be given, inter-relating the input and output ports of A. For example, an i/o-
constraint can be used to define (or approximate) how values of output ports can be
derived from values of input ports. Such a (partial) specification of an actor can be
used to propagate hybridization constraints themselves through one or more actors. As-
sume that p1 ∈ in(A) has the structural type s1 = r(site, day, spp, occ) from above,
and p2 ∈ out(A) has a structural type s2 = r′(sp, oc),10 and that the following i/o-
constraint ϕio is given:

∀xsite, xday, xspp, xocc : r(xsite, xday, xspp, xocc) −→ r′(xspp, xocc) (ϕio)

Using the i/o-constraint ϕio, we can now propagate the above constraint α1 “through”
the actor A by applying ϕio. We are currently exploring reasoning procedures for prop-
agation that handle a variety of i/o-constraint operations including aggregration, union,
and group-by constructs. In this simple example, by applying the propagation proce-
dure, we would obtain a (hybridization) constraint α2 for the output port p2 of A:

∀xsp, xoc ∃y : r′(xsp, xoc) −→
MEASUREMENT(y) ∧ ITEMMEASURED(y, xoc)∧
SPECIESOCCURRENCE(xoc)

(α2)

Summary. Given the various extensions described above, we can now define a typed
workflow W = 〈A,D, Σ, M, Φ〉 to also include a set of constraints Φ. More precisely,
Φ = 〈ΦS , ΦO, ΦH, Φio〉 consists of a set ΦS associating structural types from S to
ports in W , ΦO associating semantic types from an ontology O to actors and ports, ΦH
linking structural and semantic types of ports, and finally Φio, specifying i/o-constraints
of actors.

4 Design and Implementation of Scientific Workflows

This section presents a collection of design primitives to support workflow engineering
(workflow conceptual design to implementation). Each primitive corresponds to a basic
operation over the formal model for actor-oriented scientific workflows. Primitives are
described as transformations that return the result of applying an operation to a work-
flow. Workflow engineers can repeatedly apply these primitives, e.g., via the KEPLER

graphical user interface, to create their desired scientific workflow (see Figure 2).
Based on the primitives, we identify design strategies to help guide workflow engi-

neers as they develop scientific workflows (see Figure 2). Each strategy emphasizes cer-
tain primitives within a larger design process. For example, a particular design method
may be divided into a set of phases, and each phase may be guided by a certain strategy.

In this section, we also outline an approach to help automate the implemention of
workflow designs. Our approach leverages hybrid typing to refine a workflow into an
implemented version by repeatedly applying specific design primitives.

9 For an early version of our approach, see [4].
10 The structural types s1 and s2 are disconnected (unless an i/o-constraint is given), so one

cannot assume the values (or types) of the input match the values (or types) of the ouput.

378 S. Bowers and B. Ludäscher

W0 t
W1

W2

Wm

Wn

…

t

t

Workflow
Design

Workflow
Implementation

Top-Down

Bottom-Up

Input Driven

Output Driven
Structure Driven

Semantic Driven

Task Driven
Data Driven

Fig. 2. Workflow engineers evolve workflows by applying design primitives (left), shown as trans-
formations t; and primitives are grouped to form design strategies (right)

4.1 Scientific Workflow Design Primitives

Basic Actor-Oriented Design Primitives. Figure 3 summarizes the basic actor-
oriented modeling primitives. In particular, we include primitives to: introduce new
actors and dataflow connections into workflows (transformation t1); add input and out-
put ports to actors (transformation t2); refine port structural types (transformation t3);
group (abstract) a portion of a workflow into a composite actor (transformation t4);
define an actor as a composite (transformation t5); create dataflow connections (trans-
formation t6); and assign a director to a workflow (transformation t7). For structural
datatype refinement (transformation t3), we require the “refined” datatype to be a sub-
type of the existing structural type. Although not shown in Figure 3, we also assume a
transformation that “generalizes” structural types (structural type abstraction) requiring
introduction of appropriate structural supertypes.

Semantic Typing Primitives. Figure 4 summarizes the semantic (hybrid) typing prim-
itives. The first two transformations t8 and t9 refine actor semantic types and input and

Basic Transformations Starting Workflow Resulting Workflow

t1: Entity Introduction
(actor or data connection)

t2: Port Introduction

t6: Dataflow Connection

t4: Hierarchical Abstraction

t5: Hierarchical Refinement

t3: Datatype Refinement
(s’ s, t’ t) s′

t7: Director Introduction

Resulting Workflow

ss t t t′

Fig. 3. Actor-oriented design primitives summarized as transformations where actors are repre-
sented as solid boxes; ports as triangles; dataflow connections as circles; composite actors as
dashed boxes; and directors as solid (green) boxes

Actor-Oriented Design of Scientific Workflows 379

Extended Transformations Starting Workflow Resulting Workflow

t8: Actor Semantic Type
Refinement
(T′ T)

T

t11: I/O Constraint
Strengthening
(ψ → ϕ)

t9: Port Semantic Type
Refinement
(C′ C, D′ D)

C

t13: Adapter Insertion

T′

t10: Annotation
Constraint Refinement
(α′ → α) s

Cα1

ψ

t14: Actor Replacement f f′

t15: Workflow Combination
(Map)

t12: Dataflow Connection
Refinement

…f1

f2

f1…
f2

ϕ

Resulting Workflow

D C′ D C D′

t
Dα2 α′1

t
D α2

s
C α1

t
Dα′2

s
C

Fig. 4. Additional primitives to support scientific-workflow design and implementation, where
adapters are shown as solid, rounded boxes

output port semantic types, respectively. Semantic-type refinement requires the intro-
duction of subconcepts, i.e., to refine an actor semantic type T to T′, the constraint
T′ � T must hold. Refining the semantic types of an actor results in specializing the
actor’s operation. For instance, by refining an input-port semantic type, we further limit
the kinds of objects an actor can process. And similarly, by refining an output-port se-
mantic type, we further limit the kinds of objects that can be produced by an actor.

Often, actor and port semantic type refinements are performed together. For exam-
ple, consider the following series of refinements (each consisting of individual actor
and port semantic type refinements):

1. DATAMATRIX → [ANALYSIS] → RESULTSET

2. PHYLOGENETICMATRIX → [PHYLOGENETICANALYSIS] → PHYLOGENETICTREE

3. NEXUSMATRIX → [CLADISTICANALYSIS] → CONSENSUSTREE

The first refinement states that the semantic type of an actor is ANALYSIS, consisting
of an input port of semantic type DATAMATRIX and output port of semantic type RE-
SULTSET. Here, ANALYSIS, DATAMATRIX, and RESULTSET represent general con-
cepts. The second refinement provides more details concerning the actor semantic type,
which also influences the input and output port semantic types. The third refinement
provides semantic types specific to a particular implementation of an analysis, again
influencing the input and output port semantic types.

Primitives t10 and t11 are used to refine hybridization constraints and i/o-constraints,
respectively. Like with semantic types, both hybridization constraint refinement and i/o-
constraint strengthening specialize existing hybridization constraints and i/o-constraints
(shown as the implications α′ → α and ψ → ϕ in Figure 4).

380 S. Bowers and B. Ludäscher

Similar to the structural type refinement operation, each semantic type refinement
operation is assumed to have a corresponding version for abstraction (i.e., generaliza-
tion of types).

Extended Primitives for Dataflow Connections. It is often convenient to “loosely”
connect actors through dataflow connections and then give the details of the connec-
tion later as the workflow becomes more complete. The dataflow-connection refinement
(transformation t12) provides two approaches for specifying the details of such a con-
nection. The first (shown as the first resulting workflow for the refinment in Figure 4)
splits a dataflow-connection node d into two separate dataflow-connection nodes d1 and
d2 such that:

merge(d1) ∪ merge(d2) ≡ merge(d) and distrib(d1) ∪ distrib(d2) ≡ distrib(d)

The second refinement transforms a dataflow-connection node d into an actor node A,
which is constructed from d as follows: (1) each port p in merge(d) generates a new
port p′ that is added to in(A); (2) a new dataflow-connection node is created to connect
the ports p and p′; (3) a new port p′′ is created and added to out(A); and (4) merge(d)
is assigned the singleton set {p′′}.

Although not shown in Figure 4, we assume both versions of dataflow-connection
refinement have corresponding generalization primitives.

Primitives for Adapter Insertion. The adapter insertion primitive (transformation t13)
is used to insert special actors called adapters between incompatible dataflow connec-
tions. We focus on adapters for situations in which a connection contains a semantic or
structural incompatibility.

A semantic adapter is used to align input and output port connections that do not
satisfy the subconcept typing constraint. We consider two cases for semantic adapter
insertion. In the first case, an output port with semantic type C is connected to an input
port with semantic type D. We assume that C and D are incompatible such that the
constraint C � D does not hold. For example, let C and D be defined as follows.

C ≡ MEASUREMENT � ∀ITEMMEASURED.SPECIESOCCURRENCE

D ≡ MEASUREMENT � ∀ITEMMEASURED.SPECIESRICHNESS

The first actor produces data containing species’ occurrence measurements and the
second actor consumes data containing species’ richness measurements. The seman-
tic types are not compatible because SPECIESOCCURRENCE is not a subconcept of
SPECIESRICHNESS. In general, however, richness data can be obtained from occur-
rence data through a simple conversion, namely, by summing occurrrence.

In this case, one may choose to insert a semantic adapter between the two actors.
Conceptually, the adapter provides a data conversion that can reconcile the semantic
differences between the two actors. Typically the input and output semantic types of
a semantic adapter will be assigned the corresponding actor output and input, respec-
tively. A semantic adapter can also have a more general input semantic type (e.g., a
semantic type C′
 C) and a more restrictive output semantic type (e.g., D′ � D).

A structural adapter is similar to a semantic adapter, but is used to reconcile incom-
patible structural types found in data connections (as opposed to incompatible semantic
types). Within KEPLER, users can determine whether connections are created that are

Actor-Oriented Design of Scientific Workflows 381

C
f

D

C′
f ′

D′

general
replacement

C
f

D

C′
f ′

D′

unsafe
replacement

C
f

context-sensitive
replacement
(“wiggle room”)

D′C′ D

C
f

D′′C′′ D

C C′
D D′

C,C′ overlap (e.g., C C′)
D,D′ overlap (e.g., D D′)

C C′′ (e.g., C′ C′′)
D D′′ (e.g., D′ D′′)

Fig. 5. Semantic type constraints for general, unsafe, and context-sensitive replacement

semantically or structurally incompatible. Incompatible types can be fixed by: (1) in-
serting an appropriate adapter; (2) modifying the data connection; or (3) abstracting
and/or refining the problem types.

Primitives for Actor Replacement. The actor replacement primitive (transition t14)
is used to “swap” one actor in a workflow with another actor. We use standard object-
oriented inheritance rules [6] to determine when a particular actor replacement is appro-
priate. Figure 5 shows three simple cases: the general case of safe replacement (shown
on the left), unsafe replacement (shown in the middle), and context-sensitive replace-
ment (shown on the right). For general replacement, an actor A1 can be replaced by
another actor A2 if the following conditions hold: 11

1. A2 has an input (output) port for each of A1’s input (output) ports12;
2. A2’s actor semantic type is a subconcept of A1’s actor semantic type;
3. A2’s input port types are equivalent or more general than A1’s; and
4. A2’s output port types are equivalent or more specific than A1’s.

As shown in Figure 5, unsafe replacement occurs when the semantic (or structural)
port types do not satisfy the above conditions. However, unsafe replacement may still
be considered appropriate when the replacement is taken in context. That is, the gen-
eral form of unsafe replacement (the middle case of Figure 5) may become safe when
the surrounding data connections are considered. We call this case context-sensitive
replacement, as shown in Figure 5, the input and output semantic (and structural) re-
placement rules are determined by the semantic (and structural) types of corresponding
data connections.

Primitives for Combining Workflows. The workflow combination primitive (trans-
formation t15) is used to assemble two or more workflows into a single “conglomerate.”
To be combined, the input and output structural and semantic types of the separate
workflows must be combatible. The most specific input types of the separate workflows
are used as the combined-workflow input types; and the most general output types of
the separate workflows are used as the combined-workflow output types. Combining

11 Note that in general we also require the i/o-constraint f ′ of the replacement to imply the i/o-
constraint f of the original actor (i.e., f ′ → f).

12 Here, A2 may contain more output ports than A1, and possibly more input ports so long as
the “extra” ports are not required. As future work, we are also more generally considering
matching aggregrations of ports.

382 S. Bowers and B. Ludäscher

similar workflows is useful for cases where multiple algorithms exist to perform a sim-
ilar function, e.g., to perform multiple multivariate statistics over the same input data.

The workflow combination primitive is similar to the higher order function
map :: [a] -> (a -> b) -> [b], which returns the result of applying a func-
tion to each element of a list. In particular, the workflow combination primitive
can be viewed as a variant Map :: a -> [(a -> b)] -> [b] that takes a value
v and a list of functions f1, f2, ..., fn, and returns a list containing the values
f1(v), f2(v), ..., fn(v).

4.2 Strategies for Workflow Design

As shown in Figure 2 (and similar in spirit to [3]), we define high-level design strategies
that emphasize specific transformation primitives. The strategies can be used to describe
design methods where at each stage, a particular strategy (a point in the design space of
Figure 2) is applied. The design strategies are defined as follows.

– Task-Driven Design: Workflow engineers focus on identifying the conceptual actors
of a workflow. This strategy can involve defining actor ports, semantic types, struc-
tural types, associations, and i/o-constraints along with hierarchcial refinements and
replacements to convert abstract actors to implemented versions.

– Data-Driven Design: Wofkflow engineers focus on identifying the input data and
dataflow connections of workflows. Dataflow connections may be elaborated using
refinement.

– Semantic-Driven Design: Workflow engineers focus on specifying the semantic
types of the workflow. The engineer may start with a “blank” workflow topology
containing basic actors and dataflow connections, and identify the appropriate se-
mantic types, adding concepts and roles to ontologies as needed.

– Structure-Driven Design: Like semantic-driven design, but for structural types.
– Input-Driven Design: Workflow engineers focus on identifying the input of a work-

flow, and design from “left to right,” i.e., from the input side to the output side of
the workflow.

– Output-Driven Design: Like input-driven design, but focus on data products first.
– Top-Down Design: Workflow engineers focus on refining actors and dataflow con-

nections. The engineer may begin with a single empty workflow and iteratively
apply hierarchical and dataflow connection refinement.

– Bottom-Up Design: Workflow engineers focus on abstraction of actors and dataflow
connections. The engineer may first define specific parts of a workflow and iteratively
abstract the workflow using hierarchical abstraction to connect the various parts.

Different workflow design methods apply in different situations. We have found
that the process of re-engineering existing applications into workflows often starts with
top-down, structure driven strategies. But, when scientists develop new workflows (e.g.,
new analyses as opposed to “re-engineered” ones), a mix of semantic, input, and output
strategies are used.

4.3 From Design to Implementation of Scientific Workflows

Here we outline an approach that leverages hybrid typing, replacement rules, and
adapter insertion to help automate the task of finding appropriate actor implementations

Actor-Oriented Design of Scientific Workflows 383

for workflow specifications. We assume there is a repository R of semantically typed
actors and workflows. We use the term abstract actor to refer to actors that cannot be ex-
ecuted (i.e., without implementations) and concrete actor to refer to executable actors.
R may consist of abstract or concrete actors, composite actors, and entire workflows.
The following steps sketch the approach for finding implementations of a workflow W :

1. if W is a concrete workflow, output W
2. select an abstract actor AT ∈ A that has an actor replacement AC ∈ R
3. let W ′ be the workflow that results from replacing AT by AC

4. if W ′ has an incompatible dataflow connection, insert an abstract adapter
5. repeat with W := W ′

The basic idea of the approach is to define a search space such that each node repre-
sents a workflow and transitions between nodes are defined using steps 2-4 above. The
procedure for finding implementations of W is to navigate the search space (e.g., using
a breadth-first or depth-first search algorithm) looking for nodes that represent concrete
workflows. In the transitions (steps 2-4) defined above, we replace individual abstract
actors in a workflow with valid replacements from the respository. When a concrete
actor is inserted that violates a semantic or structural typing rule, we also insert an ab-
stract adapter actor, which can also be replaced (in subsequent steps). In general, for
a given worfklow W there may be many associated concrete workflows, depending on
whenever an abstract actor can be replaced by more than one repository element. The
user may wish to combine some or all of the resulting workflows using the workflow
combination primitive.

5 Summary

This paper extends our previous work by describing a formal model of scientific work-
flows based on actor-oriented modeling and design. The approach facilitates conceptual
modeling of scientific workflows through a novel hybrid type system, and by provid-
ing a set of primitive modeling operations for end-to-end scientific workflow develop-
ment. Our approach can also support the conceptual and structural validation of scien-
tific workflows, as well as the discovery of type-conforming workflow implementations
via replacement rules and by inserting appropriate semantic and structural adapters for
workflow integration. Much of this work is currently implemented within the KEPLER

system, and we are currently extending KEPLER with semantic propagation and addi-
tional reasoning techniques to further exploit hybrid types.

References

1. A. Ailamaki, Y. E. Ioannidis, and M. Livny. Scientific Workflow Management by Database
Management. In Proc. of SSDBM, pages 190199, 1998.

2. G. Alonso and C. Mohan. Workflow Management Systems: The Next Generation of Dis-
tributed Processing Tools. In Advanced Transaction Models and Architectures. 1997.

3. C. Batini, S. Ceri, and S. Navathe. Conceptual Database Design: An Entity-Relationship
Approach. Benjamin/Cummings, 1992.

384 S. Bowers and B. Ludäscher

4. S. Bowers and B. Ludascher. An Ontology-Driven Framework for Data Transformation in
ScientificWorkflows. In Proc. of the Intl. Workshop on Data Integration in the Life Sciences
(DILS), volume 2994 of LNCS, pages 116. Springer, 2004.

5. F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Conceptual Modelling ofWorkFlows. In Object-
Oriented and Entity-Relationship Modelling Conference (OOER), volume 1021 of LNCS,
pages 341354. Springer, 1995.

6. G. Castagna. Covariance and contravariance: conflict without a cause. ACM Transactions on
Programming Languages and Systems (TOPLAS), 17(3), 1995.

7. K. W. B. H. Wright and M. J. Brown. The Dataflow Visualization Pipeline as a Problem
Solving Environment. In Virtual Environments and Scientific Visualization. Springer, 1996.

8. B. Kiepuszewski. Expressiveness and Suitability of Languages for Control Flow Modelling
in Workflows. Ph.D. Thesis, Queensland University of Technology, 2002.

9. E. A. Lee and S. Neuendorffer. Actor-oriented Models for Codesign: Balancing Re-Use and
Performance. In Formal Methods and Models for Systems. Kluwer, 2004.

10. E. A. Lee and T. M. Parks. Dataflow process networks. Proc. of the IEEE, 83(5):773801,
1995.

11. B. Ludascher, I. Altintas, D. H. Chad Berkley, E. Jaeger-Frank, M. Jones, E. Lee, J. Tao, and
Y. Zhao. Scientific Workflow Management and the Kepler System. Concurrency and Com-
putation: Practice and Experience, Special Issue on Scientific Workflows, 2005. to appear.

12. S. Majithia, M. S. Shields, I. J. Taylor, and I. Wang. Triana: A Graphical Web Service Com-
position and Execution Toolkit. In Proc. of the IEEE Intl. Conf. onWeb Services (ICWS).
IEEE Computer Society, 2004.

13. J. Meidanis, G. Vossen, and M. Weske. Using Workflow Management in DNA Sequencing.
In Proc. of CoopIS, pages 114123, 1996.

14. J. P. Morrison. Flow-Based Programming: A New Approach to Application Development.
Van Nostrand Reinhold, 1994.

15. T. M. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, R. M. Greenwood, T. Carver, K.
Glover, M. R. Pocock, A. Wipat, and P. Li. Taverna: a tool for the composition and enactment
of bioinformatics workflows. Bioinformatics, 20(17):30453054, 2004.

16. W. van der Aalst and K. van Hee. Workflow Management: Models, Methods, and Systems
(Cooperative Information Systems). MIT Press, 2002.

17. W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros. Workflow
Patterns. Distributed and Parallel Databases, 14(1):551, 2003.

18. M. zur Muehlen. Workflow-based Process Controlling: Foundation, Design, and Application
of workflow-driven Process Information Systems. Logos Verlag, Berlin, 2004.

	Introduction
	Preliminaries: Business vs. Scientific Workflows and Kepler
	A Formal Model of Actor-Oriented Scientific Workflows
	Actor-Oriented Hierarchical Workflow Graphs
	Models of Computation
	Structural and Semantic Typing of Scientific Workflows
	Hybrid Types for Scientific Workflows

	Design and Implementation of Scientific Workflows
	Scientific Workflow Design Primitives
	Strategies for Workflow Design
	From Design to Implementation of Scientific Workflows

	Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

