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Research in ecology increasingly relies on the integration of small, focused studies, to
produce larger datasets that allow for more powerful, synthetic analyses. The results of
these synthetic analyses are critical in guiding decisions about how to sustainably manage
our natural environment, so it is important for researchers to effectively discover relevant
data, and appropriately integrate these within their analyses. However, ecological data
encompasses an extremely broad range of data types, structures, and semantic concepts.
Moreover, ecological data is widely distributed, with few well-established repositories or
standard protocols for their archiving and retrieval. These factors make the discovery and
integration of ecological data sets a highly labor-intensive task. Metadata standards such as
the Ecological Metadata Language and Darwin Core are important steps for improving our
ability to discover and access ecological data, but are limited to describing only a few,
relatively specific aspects of data content (e.g., data owner and contact information, variable
“names”, keyword descriptions, etc.). A more flexible and powerful way to capture the
semantic subtleties of complex ecological data, its structure and contents, and the inter-
relationships among data variables is needed.

We present a formal ontology for capturing the semantics of generic scientific
observation and measurement. The ontology provides a convenient basis for adding
detailed semantic annotations to scientific data, which crystallize the inherent “meaning”
of observational data. The ontology can be used to characterize the context of an
observation (e.g., space and time), and clarify inter-observational relationships such as
dependency hierarchies (e.g., nested experimental observations) and meaningful
dimensions within the data (e.g., axes for cross-classified categorical summarization). It
also enables the robust description of measurement units (e.g., grams of carbon per liter of
seawater), and can facilitate automatic unit conversions (e.g., pounds to kilograms). The
ontology can be easily extended with specialized domain vocabularies, making it both
broadly applicable and highly customizable. Finally, we describe the utility of the ontology
for enriching the capabilities of data discovery and integration processes.
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1. Introduction

Ecology is an inherentlymultidisciplinary science that explores
howphysical andbiological factors and their inter-relationships
establish the structure and function of living systems. Accord-
ingly, the range of data that can inform ecological analyses is
incredibly broad, often involving perspectives frommany fields
in the earth sciences (e.g., geography, oceanography and
hydrology) and life sciences (e.g., genetics and physiology). The
need to access these diverse data sources becomes especially
acute when undertaking synthetic analyses to address broad
ecological questions, suchas the impacts of deforestationon the
global balance of greenhouse gases, or the link between
biodiversity losses and the productivity of our world's fisheries.
Ecological insights are critical to understanding many complex
real world issues that have vital implications for the quality and
sustainability of life on this planet.

Approaches to ecological synthesis today leverage the
rapidly growing amounts of data available through the
Internet. However, current methods for finding and inter-
preting potentially relevant data are extremely primitive and
inefficient, which severely impedes progress in accomplish-
ing synthetic ecological science (Pickett et al., 1994). The lack
of advanced technical tools for data exploration and inter-
pretation has long been recognized (Chen, 1976; Batini et al.,
1992; Hammer and Macleod, 1999), and proposed enhance-
ments are still largely lacking in practical, non-proprietary
implementations.

Effective data discovery is particularly problematic in
ecology, where traditionally small, focused studies employed
largely ad hoc data management solutions, often consisting
of flat files or spreadsheets with minimal formal structure
and little to no metadata documentation. This situation was
viable when researchers worked only with their own data,
and data management was considered merely a provisional
framework for accomplishing some specific analyses, after
which, one moved on to other research questions and data
analyses. Researchers maintained many of the details of
their data in their memory, with maximum cognizance of the
relevant subtleties and issues in the data ideally occurring
simultaneously with the period when they were actively
being analyzed (Michener et al., 1997).

Recently there has been a growing recognition of the need
to both preserve ecological data after their intended usagewas
completed, as well as to extend data collection events through
time to discern long-term trends in ecological processes
through intensive site-based studies (Michener, 2000). This
recognition raised concerns about the lack of protocols and
services for preserving ecological data (Gross and Pake, 1995),
and clarified the need for reducing the possibilities of “data
entropy” (Michener et al., 1997). Efforts grew to develop
metadata standards that can systematically structure the
types of information that researchers should document about
their data, making these far more effective for informing
future studies (Jones et al., 2006).

The Ecological Metadata Language (EML) was developed
through a community-based effort involving researchers and
information managers from several institutions charged with
accomplishing ecological synthesis and long-term research
(Jones et al., 2001). While intended primarily for the purpose of

preserving critical metadata about ecological data sets, it is
essentially a generic standard for describing tabular data, in
addition to a number of other data formats (Fegraus et al.,
2005). While EML is a growing standard for data documenta-
tion in the ecological field, practical experience using this
standard has revealed that metadata alone has some serious
shortcomings in terms of the capabilities it can provide
scientists in data discovery and interpretation. These short-
comings are particularly severe in ecology due to the
heterogeneity of topics studied, and the relative lack of
standardized protocols and methods when measuring vari-
ables of ecological interest.

Metadata languages have also been developed for describ-
ing natural history specimen data, such as Darwin Core
(Darwin Core, 2004). Both the Darwin Core and EML metadata
standards primarily focus on describing data format (i.e.,
describing data structure) along with high-level contextual
information (often by adopting Dublin-core style attributes
such as who created a data set and when [DCMI, 2006]).
Furthermore, these standards generally lack support for
capturing even the basic “semantics” of data—i.e., information
that broadens the capability for understanding or interpreting
the content and relevance of the data from a disciplinary
perspective. For example, while EML allows one to declare that
a data set contains an attribute labeled “biom” (e.g., referring to
a biomassmeasure), it is not possible using EML to determine if
it is compatiblewith another attribute labeled “weight” or “kg”.
What is needed is a way to capture such concepts and
relationships in formal models that can then be used to draw
logical conclusions (e.g., consistency, equivalence) without
human intervention. The creation of such a framework must
also address the need for a simple mechanism to assist
scientists in mapping their observations onto such models.

This paper describes an approach for enhancing the
capability of ecological scientists to more powerfully discover,
interpret, and reuse data in support of synthetic research.
While provision of access to “others” data raises some
interesting issues and challenges with regards to the sociology
of data-sharing and intellectual property rights, the focus here
is solely on addressing several of the most pressing techno-
logical impediments to accomplishing scientific synthesis:
data discovery and (legitimate) integration. Discovery is the
process of locating relevant and available data related to a
specified topic of interest. This process is currently hampered
by the lack of well-described data to begin with, and
compounded by the inability to clearly explicate and explore
basic semantic notions within and across data sets (e.g., that
biomass is a weight and that “dry weight” is a biomass and a
weight). Integration is the process of merging compatible data
once these are discovered. Here, we present a formal ontolo-
gical framework for capturing the essential semantic informa-
tion of observational data sets to better facilitate the discovery
and integration of ecological information, thus aiding ecolo-
gists in synthesizing knowledge for answering larger ecolog-
ical questions.

Ontologies are representations of the knowledge within a
domain of interest, defined via the terminology (concepts)
used within the domain and the properties and relationships
among domain objects (Baader et al., 2003). In this way,
ontologies represent one enabling mechanism for providing
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more comprehensive data discovery and integration (Jones
et al., 2006). As a simple example, if instances of biomass are
defined as instances ofweight in a particular domain ontology,
then data about biomasswill be discovered when searching for
data about weight (i.e., based on an ontology reasoning system
[Baader et al., 2003]). Moreover, these data are compatible
through being semantically classified as weights, and can
potentially be merged. A number of formal (logic-based)
languages exist to capture ontologies, including description
logics (Baader et al., 2003), semantic networks (Sowa, 1999),
and the more recent RDF and OWL web-based standards
(McGuinness and van Harmelen, 2004). While ontologies are
being used successfully in a number of biological and medical
informatics projects (The Gene Ontology Consortium, 2000;
Rosse and Mejino, 2003; Bard and Rhee, 2004), widespread
support for ontology-based approaches and ontology devel-
opment has yet to be adopted within the field of ecology.

Our work on ontologies is within the context of the Science
Environment for Ecological Knowledge (SEEK; http://seek.
ecoinformatics.org) project, which aims to develop technology
to discover, access, integrate, and analyze distributed ecolog-
ical information (e.g., using scientific workflows [Ludäscher
et al., 2006; Kepler Project, 2006]). The project's approach is to
extend EML to support the semantic annotation of ecological
data sets, such that EML data-set descriptions can use terms
drawn from OWL-DL ontologies. A benefit of using OWL-DL
(which itself is based on description logic) is that it supports a
“natural” representation for formalizing terms. In particular,
named classes (such as Biomass or Plot) define sets in OWL-DL,
where eachmember of a set is considered an “instance” of the
corresponding class (e.g., the class Biomass might denote the
set of all biomasses; Plot the set of all physical plots). Class
definitions are typically intentional, i.e., classes are defined
based on their name or possibly other constraints, without
enumerating their instances. The “intent” of a class is usually
further elaborated by relating it to other classes. The “is-a”
relationship defines class specializations as subsets. For
example, the expression “Biomass is-a Weight” implies all
biomass instances are also valid weight instances. OWL-DL

also supports user-defined properties, e.g., to capture part-of
relationships between classes, as well as cardinality and other
(set-based) constraints (Baader et al., 2003).

While formal languages such as OWL-DL provide a means
to capture ontologies, the quality of the realized ontology will
determine its utility for assisting in data discovery and
integration. Additionally, as the number of ontologies and
their included terms increases, organizing these into a
coherent framework becomes increasingly complex, as recog-
nized within the biological community, e.g., see [Bard and
Rhee, 2004]. In this paper, we describe the SEEK Extensible
Observation Ontology (OBOE), which aims at providing a core
ontology framework for semantically annotating observation-
al data sets. Our framework defines a formal ontology based
on the concepts of Observation, Measurement, (Ecological) En-
tity, Characteristic, and Measurement Standard (e.g., physical
units) (Fig. 1), providing a structured yet generic approach for
semantic data annotation and for developing (and combining)
domain-specific ecological ontologies. Our approach differs
from other ontology-based descriptions of ecological end
environmental information (e.g., Keet, 2005; Smith and
Varzi, 1999a,b; Smith, 2001; Gruber and Olsen, 1994; Brilhante,
2003; Cox, 2006; Williams et al., 2006; Schnetz and Mirtl, 2003)
in that we focus specifically on providing: (i) a robust
framework for describing generic scientific observations; (ii)
a structured approach for easily building and sharing domain-
specific ontology extensions; and (iii) data discovery and
integration services, via semantic annotations to the ontology,
across varied ecological observation data (and not just for a
specific, specialized domain). In Section 2, we describe our
framework using a number of real-world examples, and
illustrate how it can be extended with domain-specific
ontologies. The ontology framework presented here has
evolved through various earlier efforts within SEEK to develop
formal ecological ontologies (Berkley et al., 2005; Bowers et al.,
2005; Bowers and Ludäscher, 2006; Williams et al., 2006), and
is based on a number of working meetings with members of
the SEEK project as well as participants from the broader
ecological community. In Section 3, we outline applications

Fig. 1 – The core classes (ellipses) and properties (arrows) of the Extensible Observation Ontology (OBOE). Each Observation is of
some Entity, and can provide context for the Observation of another Entity. A Characteristic of an Entity can be represented
through a Measurement. Measurements relate Characteristics to a Measurement Standard via a Value and, if applicable, a
Precision. Measurements are taken by a Recorder (human or non-human) using a Protocol at a particular Time and Place
(shaded properties, see text for details). Observations may have multiple Measurements. Entity (a), Characteristic (b), and
Measurement Standard (c) (shaded classes) provide extension points for domain-specific ontologies (see Fig. 3). Numbers in
parentheses denoted min:max cardinality for properties.
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of our ontology for data discovery and integration. Finally,
Section 4 concludes with a summary of our contributions and
future work.

2. The observation ontology

The goal of the Extensible Observation Ontology (OBOE) is to
serve as a formal and generic conceptual framework for
describing the semantics of observational data sets (i.e., data
sets consisting of observations andmeasurements). OBOE also
prescribes a structured approach for organizing domain-
specific ontologies through the use of “extension points.”
OBOE extension points allow ontology classes, properties, and
constraints to be easily defined for a particular domain-
specific terminology, and existing domain extensions to be
interrelated. Thus, OBOE can serve as a framework for defining
new domain ontologies as well as interoperating and relating
existing ones. Fig. 1 graphically depicts the basic core structure
of OBOE, which consists of five classes labeled Observation,
Entity, Measurement, Characteristic, and Measurement Standard,
and six properties labeled hasContext, ofEntity, hasMeasure-

ment, hasValue, hasPrecision, usesStandard, and ofCharacteristic.
Additional properties may be added to the Measurement class
to capture when and where measurements were recorded,
who recorded each measurement, the protocols of measure-
ments, and so on. Similar properties can also be added to the
Observation class. (Note that we capitalize OBOE classes to
distinguish them from more general concepts, e.g., ‘Observa-
tion’ denotes an OBOE class whereas ‘observation’ denotes the
more general concept.)

Today, most details of observational data are not recorded.
Instead, the physical representation of data is often optimized
for data collection; for use within a specific tool, e.g., R
(R Development Core Team, 2005) or SAS® Software; or for a
particular analysis, e.g., to perform a calculation requiring a
site-by-species matrix. As a consequence, contextual infor-
mation concerning data is typically implicit, where context is
(possibly) encoded by attribute labels, implied by the proxim-
ity of attributes (i.e., neighboring data), stored in metadata as
natural-language descriptions, or altogether missing. Consid-
er the first data table in Fig. 2. The column of data labeled “Ht”
can be assumed to represent height, giving information about
the characteristic of some entity that was measured. However,

Fig. 2 – Example data sets where: I contains data about coral crabs living within different coral species, including the given
location and replicate transect, the species name, distance along the transect, colony area for coral colonies, and the number
of crabs found in each colony; II contains data (from another study) about the density of coral crabs in different coral colonies,
including the species name and crab density (other attributes, such as date and location, are described in the metadata, e.g.,
field notes); and III contains the results of merging I and II.
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Fig. 3 – Detailed representation of OBOE core classes and examples of ontology extensions for Entity, Characteristic, and Measurement Standard. Shaded ellipses
represent OBOE core classes, and open ellipses represent domain extensions for the examples given in this paper.
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Fig. 4 – Examples of OBOE observational-data instantiations: (a) represents the observation of a coral where the coral
height is measured in meters; (b) represents the observation of a community (an ecological concept) where diversity of
taxa is measured using the Shannon Diversity index; (c) represents the observation of an animal classified as female via
reference to a classification standard; (d) represents the observation of a reef entity classified as a “bird” (non-identifying),
without reference to a specific Entity Classification Standard; (e) represents an observation of a reef with the (identifying)
name of a particular reef according to an Entity Naming Standard for Lizard Island reefs; (f) represents the maximum
depth of a particular reef; (g) represents an observation of the Acropora hyacinthus entity (i.e., the species concept) for
which measurements can potentially be recorded; (h) represents an animal classified as a taxon, but without reference to
an Entity Classification Standard, whereas for (i) a Standard is given.
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no explicit information is given about the entity itself. The
neighboring column labeled “Sp” suggests that each height
measurement was for a species given in the column. Further,
if all such species values in the column correspond to types of
reef coral, one could surmise the kind of entities to which the
heightmeasurements pertain. The goal of OBOE is to provide a
generic model for making such information explicit, which
can then enable automated approaches for merging data (e.g.,
in this case with other coral data) and data discovery (e.g., for
researchers looking for data on coral heights).

The rest of this section details the core OBOE classes and
properties shown in Fig. 1, and demonstrates the use of OBOE
for capturing observation data and for extending OBOE with
domain ontologies. Although not discussed here, OBOE is
encoded using the OWL-DL ontology language (McGuinness
and van Harmelen, 2004), which gives a description-logic
(Baader et al., 2003) formalization of the various parts of the
OBOE ontology described below.

2.1. Observations

In OBOE, an observation is a statement that an entity of a
particular type was observed. As shown in Fig. 1, all Observa-
tions are composed of exactly one Entity (expressed by the
cardinality restriction “1:1” on the ofEntity property). The
Entity class in OBOE represents all concrete and conceptual
objects that are “observable.” While this notion of entity is
extremely generic, it serves as a placeholder (i.e., extension
point) for more specific types of objects. The left-hand portion
of Fig. 3 gives a simple example of an Entity-class extension
model, which is used in the examples of this paper. As shown,
Entity classes are extended via is-a relations. For example,
every Organism Entity is also an Entity, every Plant Entity is an
Organism Entity (and hence an Entity), and so on. Hierarchies,
like the Entity class hierarchy of Fig. 3, can be additionally
constrained in OBOE using OWL-DL language constructs,
specifying that classes are disjoint, equivalent, or related to
multiple other classes combined through set union and
intersection operations (e.g., stating that one class is equiva-
lent to the union of two or more other classes). Although not
shown, a number of Entity classes in Fig. 3 are defined as non-
overlapping (disjoint). For instance, the Plant and Animal Entity
classes are represented as disjoint sets of objects implying
that no Plant Entities are Animal Entities, and vice versa. While
the domain extensions portrayed in Fig. 3 are narrow and
specialized for the purposes of this paper, we do not anticipate
a single, universally accepted OBOE Entity classification.
Instead, we aim to support multiple domain-specific exten-
sions through OBOE, in which scientific groups and commu-
nities can flexibly build, share, and extend their own
specialized entity (and other extension) models.

The Entity classes associated with observations in the first
example data set of Fig. 2 include Reefs, Replicate Transects,
Animals, and Populations of coral crab. In addition, some of
these observations serve as context for other observations. For
instance, each observation of a coral crab population occurs
within the context of an animal (i.e., a coral colony). The has-
Context property shown in Fig. 1 is used to capture these kinds
of contextual relationships. In particular, an observation can
serve as context for zero or more other observations, and can

itself have multiple contexts (e.g., a replicate transect may
occur within a broader spatial context as well as a particular
temporal context). Context in OBOE is defined independently
from the observed entity, allowing the notion of observation
scale to be efficiently formalized as well as systems imple-
menting OBOE to perform automatic re-contextualization
when merging observations (e.g., see Villa, 2007). Examples
using context for merging observations are shown in Section
3.3.

The hasContext property asserts a “dependency” relation-
ship between corresponding entities at the time of the
observation, and thus, is defined to be transitive (Smith,
1996). For instance, each observation serving as context for
replicate transect observations in the first example data set of
Fig. 2 is also context for corresponding coral-colony observa-
tions. The hasContext property can also be extended to
represent more specific types of contextualization, e.g., many
of the mereological (i.e., part-of or containment) relations
defined inWand et al. (1999) would be suitable extensions. The
transitive nature of hasContext can simplify the semantic
annotation process in that by specifying only direct observa-
tion dependencies, it is possible to automatically infer all
other indirect dependencies.

In OBOE, the type given to an observed entity is considered
an essential quality (Guarino and Welty, 2002). An entity's
essential qualities help to define it, and always hold (are
invariant) regardless of the entity's context. For example,
observing an entity of type Animal Entity implies that
regardless of context, the particular object being observed is
an “animal”. In this case, if the object was not an animal, it
would be a different object altogether. Alternatively, one may
assert that for a given context, a particular object is observed
to be of a certain type, possibly to some degree of confidence.
In this case, the type may not be an essential quality of the
entity, since in a different context the quality may not hold.
For instance, an object's observed height may change in
different contexts. Assuming height is not an essential quality
of the object, it would not be correct to assign it a type such as
Tall Animal Entity. Qualities that are not essential are attributed
to entities in OBOE throughmeasurements, whichwe describe
in the following subsection.

2.2. Measurements

In OBOE, Observations can be composed of Measurements,
which represent measurable Characteristics (i.e., qualities) of
the entity being observed. As mentioned above, measure-
ments in OBOE are assertions about an entity, and are not
necessarily essential to the entity. Although not shown in
Fig. 1, a Measurement is always associated to an Observation
(i.e., no Measurement can exist without an associated
Observation). Moreover, a particular Measurement can be
associated with at most one Observation (i.e., two Observa-
tions may not share the same Measurement). Measurements
assign values, via a Measurement Standard, to the character-
istic of the associated entity. For certain types of measure-
ments (e.g., physical quantities), a Precision is also given.
Properties also exist for who recorded the measurement,
when and where, and using what protocol (shaded proper-
ties, Fig. 1). These properties are not considered context, but
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rather measurement-level metadata that can potentially be
used for data discovery (e.g., finding all data that were
measured using a particular protocol). Our definition of context
captures observation-level transient hierarchies, which include
observations of space and time for analytical purposes (e.g., the
date was recorded because it was considered an important
factor in an ecological study, but who recorded the date and
whenandwhere thedatewas recorded isnot important froman
analytical perspective.

Measurements in OBOE can be used to denote awide range
of instantiations of entity characteristics, including name or
identity, a classification such as color (i.e., nominal and
ordinal measurements; Stevens, 1946) or existence (e.g.,

measured as presence). Thus, the concept of measurement
in OBOE is more generic than physical measurements alone.
Fig. 4 gives a number of example observation-measurement
instantiations. Note that we use the UML convention “id :
Observation”, or simply “: Observation” when the id is un-
known, to denote an instance of the Observation class
(Jacobson et al., 1998). Fig. 4a states that a coral was observed
such that the height of the coral wasmeasured as 0.46mwith
a precision of 0.01. Fig. 4b states that the diversity (a
characteristic) of a community was measured as 1.24 accord-
ing to the Shannon-diversity index.

In OBOE, Characteristics represent the types of measurable
traits of entities, and denote another OBOE extension point.

Fig. 5 – Example OBOE Measurement Standard extensions: (a) a Simple Derived Unit; (b) a Complex Derived Unit composed
of two other units, as well as corresponding “semantic units” (dashed box), i.e., units linked to particular types of entities;
(c and d) Nominal Classification Standards, one for male/female domains and another for taxonomic classification with
“according to” relations; (e) an Ordinal Classification Standard including the “higherRankThan” property; and (f) an Entity
Naming Standard representing a unique reef entities.
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Example Characteristic class extensions are shown at the right
of Fig. 3, again defined via the is-a relation. Dimension is a core
OBOE class that represents the distinguished set of physical
dimensions that are used to define unit systems (described
further below). Entity Classification and Name classes in our
example extension ontology denote “stand-alone” trait
types, e.g., which can be used directly in semantic annota-
tions. Entity Classification Qualifier classes, however, must be
combined—through intersection—with Entity Classification
characteristics to be used in annotation. For instance, the
class Maximum Depth used in Fig. 4f is defined as the
intersection of theMaximum and Depth Characteristic classes.
Unlike Entity Classification Characteristics, which group
entities according to shared values (e.g., the entities of a
particular depth), the Entity Name Characteristics are used to
uniquely identify individual entities.WeakEntityNamesuniquely
identify entities that share observation context, i.e., weak names
are context dependent. Strong Entity Names uniquely identify
entities regardless of observation context. Plot names (e.g., Plot
“A”, Plot “B”, etc.) are typical examplesofweakentitynames, and
geographic locations are typical examples of strong entity
names.

Characteristics and Entities are assumed to be disjoint
(similar to Parsons and Wand (2000) and Bunge (1977)), even
though the same term can often be used to refer to a
characteristic or entity in natural language. For instance,
‘area’ could be the subject (i.e., entity) of an observation, where
characteristics of the area entity are measured (e.g., its width).
Conversely, ‘area’ could be a characteristic measured about an
entity (e.g., the physical size of a study plot). Unique names are
required in OBOE to distinguish these terms, e.g., Area Entity
and Area Characteristic.

2.3. Measurement standards

A measured value (or “data point” in an observational data
set) cannot be interpreted without reference to a defined
measurement standard. Moreover, data integration relies on
the ability to determine if two values are compatible, and if
conversion to a common standard is possible. In OBOE,
Measurement Standards are all the units, scales, categories,
catalogs, and lists that are utilized when measuring a
characteristic. Fig. 3 illustrates core OBOE classes for
representing measurement standards, as well as a selection
of classes used by examples in this paper (i.e., as a
Measurement-Standard class extension). OBOE enforces a
constraint (forCharacteristic) between the measurement
standards and the characteristics that they represent. For
example, the physical unit meter can only be used to
represent characteristics that belong to dimension length,
such as height.

OBOE defines two subclasses of Measurement Standard:
EntityNaming Standard and Entity Classification Standard. An
Entity Naming Standard is a naming scheme for globally
identifying individual entities,where each entity is assumed to
have only one instance (e.g., California or ID6547); whereas an
Entity Classification Standard is for classifying entities by their
traits, where each entity associated with a classification is
assumed to have one or more instances (e.g., Tall, 12 m,
Nitrogen Treatment, or Red). The Entity Classification Stan-

dard class contains the Steven’s Scale hierarchy: Nominal
Standard (classifications are either the same or different),
Ordinal Standard (classifications can be greater than or less
than), and RatioInterval Standard (classifications are quanti-
tative). The RatioInterval Standard is further subdivided into
Unit, DateTime, and Index classes. The first of these, Unit, is
subdivided into three disjoint classes. Base Unit contains the
fundamental physical units, including SI units (e.g., meter,
kilogram, second), and all manifestations of these units (e.g.,
millimeter, gram, hour). Base Unit also contains units for angle
(e.g., degree), as well as number of items (individual). Simple
Derived Unit contains all the physical units that are raised to a
power other than 1, e.g.,Meter Square (see Fig. 5a). The final unit
class, Complex Derived Unit, is composed of two or more Simple
Derived Units and/or Base Units, an example of which is given in
Fig. 5b. Here, the Individual perMeter Square class is composed of
the Individual Base-Unit class and the Per Meter Square Simple
Derived-Unit class (i.e., Meter Square raised to the power of -1).
TheOBOE representation for units aswell as the corresponding
representation for dimensions (given in Fig. 3) is adopted from
the approachused by the EMLunit dictionary (Jones et al., 2001;
Michener et al., 1997), which is based on the STMML language
(Murray-Rust and Rzepa, 2002) and the NIST Reference on
Constants, Units, and Uncertainty (http://physics.nist.gov/
cuu/Units/introduction.html).

Measurement standards are composed of one or more
measurement-standard domains through the hasDomain
property. Each domain represents a possible value of the
standard, and is (implicitly) related to the set of entities that
have the corresponding characteristic value through the
hasElement property. Measurement standard domains can be
used to restrict the type of entities beingmeasured. In the case
of complex derived units (e.g., areal density, Fig. 5b)—composed
from two or more independent unit types—each independent
unit type can additionally be related to a corresponding entity
type. In this way, OBOE provides a mechanism to describe so-
called semantic units, e.g., grams of carbon per cubic meter of
seawater, or individuals of rabbit per individuals of fox. For
instance, in Table II of Fig. 2, the data value 6 represents the
density of individuals in a coral, which can be expressed using
a semantic unit (corresponding to the Individual per Meter
Square class) defined as the composition of two unit compo-
nents: the unit component Individual linked to the Crab Entity
class, and the componentMeter Square (raised to the power of -1)
linked to the Coral Entity class (shown as dashed ellipses in
Fig. 5b). Semantic units are commonly used in ecological data
sets, and using OBOE it is possible to formally define the
meaning of these units, making them available for discovery
and integration processes (see Section 3).

The second subclass of Measurement Standard, Index, is a
container for all the indices, scales, and surrogates of non-
dimensional measures such as pH, the Richter Scale, and the
various representations of biological diversity and evenness.
Indices are often calculated using physical units, but have lost
physical dimensionality due to a functional transformation (e.g.,
logarithmic or exponential transformation). For example, by
log-transforming a measurement of height, dimensionality is
lost, and themeasurement insteadbecomesan index forheight.
Note that we do not consider a “dimensionless” unit of
measurement in OBOE, since units are essential information
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Fig. 6 – OBOE representation of the first row of data in Table I in Fig. 2. The colon placed before a class name denotes the
instantiation of the class, i.e., “: Distance” is amember of the ontology class “Distance.” Solid ellipses represent the observation
and measurement structure of the data set, including metadata (dashed box). Open ellipses represent terms selected from
ontology extensions for each of Entity, Characteristics, and Measurement Standard. White squares represent the physical
values from the data table or the metadata, and Precision where applicable.
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in data integration even when the components of a complex
unit cancel. For example, a ratio of two heights measured in
meters is representedusinga complexderivedunit consistingof
the base unitmeter and the simple derived unit that represents
meter raised to the power of −1.

The third subclass, DateTime, is a container for the different
ways of expressing a point in time (e.g., 12:30 am, 12-23-06, or
234 mya [million years ago]), as opposed to time intervals,
which are represented using physical units (e.g., second, year,
etc.). Many standards for representing the notion of date-time
exist, and can be used to extend OBOE's DateTime class.
Extensions for the DateTime class can include standards for
representing Gregorian and Julian calendars, geological time
scales, and the correlations among them. Measurements that
use the first three subclasses of RatioInterval Standard—Unit,
Index, and DateTime—also have precision, which indicates an
estimate of the proximity of the measurement value to the
real world value. Precision differs from accuracy, which is a
methodological consideration, and thus, like methods for
observation and measurement, is not elaborated here.

The subclass Entity Classification Standard contains mea-
surement standards representing holistic characteristics of
entities, such as taxonomic classification, color, or rank.
Domains of classification standards are used for comparison
when making a measurement (be it a conscious or subcon-
scious comparison) and are assigned codes via the hasCode
property denoting values of the standard. For example, the
Sex Classification Standard class for the Sex characteristic
class has the two domains Female Domain and Male Domain.
Fig. 4c illustrates the use of this classification standard,
stating that an animal was observed, the sex characteristic
was measured, resulting in the value “F”, which is the code
used in the data set for a Female Entity (from the classification
domain). Therefore, this example asserts that the entity, in
the particular observation context, is the intersection of
animal (given as an essential quality) and female (asserted
via measurement).

OBOE requires a measurement standard for all measure-
ments. However, in certain situations a measurement stan-
dard does not exist, e.g., when an ad hocnaming scheme is used
inadata set. ThedefaultOBOEmeasurement standard is Entity
Classification Standard which assumes a corresponding Clas-
sification Domain whose code is the value of the measure-
ment. For instance, Fig. 4d states that a particular reef was
observed and that its name (in the current context) is “bird”,
however, a reference to a known standard is not given. In this
case, a default standard is used containing a single Classifica-
tion Domain with the code “bird”. Here, the observed entity is
not uniquely identified by the name “bird” since it is possible
thatmanyentities share this name;whereas themeasurement
given in Fig. 4e uses the Lizard Island Reef naming standard,
which associates exactly one entity to the name “bird”, to
uniquely identify the reef entity.

Finally, Fig. 4g–i also illustrates various representations of
taxonomic name using OBOE. Fig. 4g considers Acropora
hyacinthus the subject of observation (and therefore an
essential quality), e.g., for describing measurements about a
taxonomic concept or specimen. Fig. 4h considers the case
where a relevant taxonomic domain is absent. Fig. 4i
demonstrates the use of prescribing additional attributes to

an entity, in which data pertaining to Acropora hyacinthus is
described as being of the taxonomic concept denoted by theA.
hyacinthus Domain according to “Dana 1846” in the Coral
Taxonomic Standard (Fig. 5d); where taxonomic concept denotes
the representation standard defined in Kennedy et al. (2005).

3. Applications of the observation ontology

This section gives an overview of ways that OBOE can be used
to facilitate the discovery and integration of ecological data. To
expose the semantics of data using OBOE, data must first be
annotated with relevant terms and relationships from the
ontology. Semantic annotation is the process by which data
are mapped to the ontology, and is accomplished by asserting
the membership of data in ontology classes (e.g., Animal
Entity, Height, Meter) and any additional relationships among
classes (e.g., hasContext). An annotation language has been
developed (e.g., see [Berkley et al., 2005; Bowers and Ludäscher,
2006]) that formalizes this mapping, and allows the annota-
tion to be applied flexibly to multiple rows or cells depending
on the data structure (e.g., table, cross-tabulation, etc.).
Annotations expressed in this language are serialized accord-
ing to an XML Schema, e.g., allowing them to be embedded
within existing EML documents (or alternatively, as stand-
alone documents that reference the corresponding EML). A
graphical user interface for selecting different domain ontol-
ogies and annotating ecological data sets is being developed,
which draw elements from EML to reduce the effort on the
behalf of the user, andwill eventually be integrated into a data
set markup wizard.

Fig. 6 is a graphical representation of how the first row of
the first data table (Table I in Fig. 2) might be annotated
according to OBOE (Fig. 1) and the example domain extensions
given in this paper (Fig. 3). The annotation in Fig. 6 would be
applied to every row of the data in Table I. The left hand region
of the figure shows the contextual hierarchy of observed
entities. The observation of Temporal Point comes from the EML
accompanying the raw data set (dashed box), and applies to
the whole data set. This temporal observation, and a Spatial
Location observation of the reef where the study took place
that was recorded in the raw data, together provide indepen-
dent context for the Field Site (i.e., the time the study took place
is not dependent on the place, and visa versa). Field Site in turn
provides context for the Replicate Transect (corresponding with
“Site” and “Trans.” in Table I, respectively). As mentioned
above, because context is transitive, Temporal Point also
provides context for the replicate transect, although the
observation of the transect still depends on that of the Reef.
Further, the replicate transect provides context for the ob-
servation of coral colony, and the coral provides context for
the observation of a crab population.

At each level of observation hierarchy,measurementswere
taken. Note that measurements tend to represent single
columns in data tables (or else are derived from metadata),
but observations tend to span one or more columns. For
example, when the replicate transect was observed, only its
name was measured to indicate that it differed from other
replicate transects at a given reef. However, additional
knowledge about the replicate transect was recorded, possibly
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in field notes, e.g., that the transectwas 30m long. On the other
hand, four measurements (representing four separate col-
umns of data) were taken for a given coral entity found on the
replicate transect: (1) the coral colony's taxonomic name
according to a given taxonomic domain, (2) the distance
along the transect where the colony was found, (3) a measure
of colony area, and (4) colony height. Meanwhile, within the
coral colony, the population of coral crabs was observed, and
the number of individuals measured. Because all the crab
populations were of the same crab species, taxonomic name
was absent from the raw data, but was recorded as metadata.

Fig. 7 is a graphical representation of the first row of the
second data table (Table II in Fig. 2). Here, much of the
semantic information is extracted from the meta-data
(dashed box), i.e., when and where the observations were
conducted, including geographic coordinates. Within this
space-time context, a coral colony was observed, and its
taxonomic name and height measured. In turn, the coral
colony provides context for an observation of a population of
coral crabs, where the number of individuals per unit area
of the colony was measured, however data about how this
calculation wasmade is missing and therefore implicit. Fig. 5b

illustrates how the crab population density can be represented
using a semantic unit (where sub-units are for different
entities), which can aid the data integration process outlined
below.

Using the semantic annotations shown in Figs. 6 and 7, the
rest of this section illustrates three useful applications
leveraging the formal structure of OBOE: data discovery,
summarization, and integration.

3.1. Data discovery

A major application facilitated by OBOE is the capability to
discover data sets based on the concepts they represent (i.e.,
their semantics), rather than just the labels and keywords that
are used in traditional searches (Berkley et al., 2001). As
mentioned previously, a data attribute labeled “Ht” in the first
row of Table I is ambiguous, even to human interpretation.
However, annotating this attribute with the Height (a Charac-
teristic) from OBOE clarifies its meaning and relationship with
other ontology terms (i.e., via is-a relations, part-of relations,
and other description-logic constraints). An enhanced key-
word search for data about “height”, e.g., can leverage OBOE

Fig. 7 – Formal OBOE representation of the first row of data in Table II in Fig. 2. Dashed box representsmetadata. b corresponds
with example b in Fig. 5, illustrating the more detailed representation using the semantic unit. See text for details.
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definitions to discover the various data sets annotated with
ontology terms related to Height, such as those assignedmore
specific terms like Body Height (Fig. 3). Search can also exploit
relationships defined in OBOE Entity extension models,
including the use of part-of relationships between classes. A
search for “coral”, e.g., could include entities that are part-of a
coral colony, such as branch, tissue, skeleton, polyp, and so
on. Note here that transitivity (e.g., of coral parts), and other
description-logic constraints (set intersection, etc.) can also be
exploited to further enhance search.

More complex forms of inference can also be used,
leveraging the logical structure of OBOE. For example,
measurement dimensionality can be exploited to enhance
keyword search, where a search for “density” data sets will not
only return those annotatedwith Areal Density, but also those
data sets that contain the Count and Area dimensions via
appropriately contextualized observations (see Fig. 10). That
is, this search would discover not only data having Areal
Density attributes (Fig. 6), but also data sets having an
attribute for Area and another attribute, functionally depen-
dent via context (Fig. 5), for Count. In general, we are exploring
the use of OBOE in this way for providing enhanced data-
discovery query results, in which keyword queries given by
scientists are: (1) expanded into their corresponding ontology
classes, similar to traditional approaches based on formal
terminologies (Voorhees, 1994; Moldovan and Mihalcea, 2000;
Jarvelin et al., 2001); and (2) these ontology classes are
compared (via is-a, part-of, and so on) to the explicit (e.g.,
Height) and implicit (e.g., where Count and Area imply
Density) classes expressed in semantic annotations.

3.2. Data summarization

Upon finding a potentially relevant data set, an important
aspect of the discovery process is to rapidly understand the
content of the data set, e.g., to determine whether the data is
relevant for a particular analysis. An often-used approach for
understanding data content is to aggregate (i.e., summarize)
attributes at various combinations of observation and mea-
surement. The OBOE framework can be used to suggest
appropriate data summarizations, and in so doing, also
determine when a particular summarization is “sensible”.
This notion of determining sensible summarizations exploits
the basic structure of OBOE (Fig. 8a). For example, measure-
ments can only be “sensibly” aggregated by other measure-
ments that are of the same entity or measurements of entities
providing observation context (i.e., “higher” contextual enti-
ties). Therefore, it makes “sense” to summarize animal height
by reef name, because the observation of reef provides context
for the observation of animal (Fig. 8b). However, if water
temperature were recorded at the contextual level of the study
site, it would not make “sense” to summarize temperature by
animal taxon name, which gives an arbitrary average tem-
perature of the reefs where a taxon was measured, and which
is dependent on the disparity in the number of animals
measured at reefs. Furthermore, weak entity names are
context dependent, and so replicate transect “1” at the study
location “bird” is not the same as transect “1” at the study
location “south”. It is therefore not “sensible” to summarize
animal height or population count by replicate transects,

unless study location (a strong entity name) is also taken into
account (Fig. 8c).

In general, the logical structure and constraints of OBOE
can be used to test the usefulness of various statistical
operations and modeling procedures. For example, when
summarizing a nominal or categorical variable, the aggregate
count is applicable, whereas continuous aggregations (e.g.,
sum, average, maximum, standard deviation, etc.) are not.
Moreover, types of modeling approaches can be recom-
mended based on measurement types. For example, para-
metric linearmodels require continuousmeasures (i.e., using a
Ratio Interval Standard), whereas the inclusion of a categorical
variable (i.e., using Measurement Standards other than Ratio
Interval) requires non-parametric model fitting approaches.
By making the semantics of observation and measurement
explicit in a formal structure such as OBOE, automated
inferencing procedures (i.e., “machine reasoning”) can be
applied to enhance the various decision making processes
used in exploring and modeling observational data sets (Gray
et al., 1997).

3.3. Data integration

Another major application that OBOE facilitates is the
capability to determine if two data sets can be either fully or
partially merged once they are discovered (and vetted, e.g.,
through summarization). To do so, a number of steps must be
taken, starting at the lowest level semantic resolution (i.e., at
the level of single measurements and observations), and
building up to the data set level (e.g., aligning observation
context). As a simple example, assume we are interested in
merging data about heights following the discovery of the data
tables I and II in Fig. 2. Fig. 9 illustrates the reasoning process
involved in merging the first height observations in each data
table, which is based on the semantic annotations using OBOE
shown in Figs. 6 and 7. The first step is to determine if, and at
what semantic resolution, the data are compatible. At the
observation level, instances of the Animal and Coral entities
are compatible at the semantic the resolution of Animal.
Observation b loses semantic resolution when standardized
for the merge (i.e., the Animal entity class is the “lowest
common denominator”). Similarly for measurement,
instances of the Height and Width characteristics are com-
patible at the resolution of Length (i.e., Length is the “common
ancestor” of the Height andWidth characteristics), where both
instances in this case lose semantic resolution. Finally, the
measurement standards used for the twomeasurements have
the same dimension, and therefore they are compatible under
OBOE's model. Assuming merging lengths of coral in this way
is desirable (e.g., for a particular analysis), Fig. 9 illustrates the
resulting merged data, where both observations are now of
type Animal, both measurements are of characteristic Length,
bothmeasurement standards are inMeters, and the values are
recalculated at the coarsest level of precision.

As a more sophisticated example, assume the result of a
discovery search for data about “animal density” on “reefs”
returns the two example data sets in Fig. 2. The data in Table I
were discovered for the reasons discussed above. To integrate
the data pertaining to areal densities, the OBOE structure can
be used to determine if the data are compatible and then
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calculate the merge. The numerator in a semantic unit
typically refers to the focal entity (count of individuals),
whereas the denominator is contextual (area of coral).
Therefore, semantic units are in essence a nested contextual
dependency (required when more detailed information about
context is missing). Therefore, if a focal entity is compatible
with the numerator of the semantic unit, and the contextual
entity is compatible with the denominator (e.g., Fig. 10a and b),
the merge result shown at the bottom of Fig. 10 can be
automatically computed. In the case of the areal densities of
crab populations, Fig. 10a and b illustrate the semantic
equivalencies between the two data tables, and calculates
the merge, where a loses resolution when being coerced into
the semantic unit form. However, knowledge about the coral

area and crab population in data Table I can still be retained
(Table III), although there are no corresponding measure-
ments from data Table II.

4. Summary

This paper presents the OBOE ontology framework for
capturing the process of ecological field observation and
measurement, facilitating logic-based reasoning (via descrip-
tion logic and OWL-DL) to be utilized to automate important
data-management applications for data synthesis. The ontol-
ogy formalizes an interpretation of observation, which focuses

Fig. 8 – Graphical examples of data summarization leveraging OBOE's formal structure. (a) The basic observation and
measurement structure for a subset of Table I. (b) Summarizing animal height by reef site (“sensible”). (c) Summarizing number of
crab by animal species, replicate transect, and reef site (not “sensible”). (d) Summarizing average number of coral crabs by replicate
transect name (not “sensible”). (e) Summarizing average number of coral crabs replicate transect (“sensible”). See text for details.
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on observing a concrete or conceptual entity, and measuring
one or more of the entity's characteristics by comparison with a
measurement standard. In general, each data point in an
observational data set is an instance of observation, and can
provide contextual information for other instances of obser-
vation. Semantic annotations define a standard representa-
tion formappingobservational data to theontology, and canbe
exploited in data discovery and integration applications.
Annotation via OBOE and associated domain extensions
makes explicit the basic definition of data and their relation-
shipswith other data, allowing annotated data sets to be easily
contrasted. This approach can facilitate more powerful data

discovery and integration approaches, and can provide guid-
ance for, and automate, data aggregation and summary.

Annotation to OBOE enables compatibility testing among
data attributes, both at the level of the attribute (i.e., are the
entity, characteristic, and measurement standard compatible?)
and the data-set level (i.e., are entity nesting structures in two
independent data sets compatible?). If compatible, the ontology
contains the necessary details (i.e., constraints) to conduct the
appropriate conversions so that data can be merged. Finally,
OBOE provides a structured approach for creating domain-
specific ontologies, allowingnewontologies to extendcoreOBOE
classes. In this way, OBOE can also be used as a “glue structure”

Fig. 9 – Merging measurements of animal height and coral length (from Tables I and II, respectively) based on semantic
annotation with terms from OBOE (Figs. 6 and 7). See text for details.
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Fig. 10 – Mergingmeasurements of crab population count and coral area (from Table I) and crab population areal density (from
Tables II) based on semantic annotation with terms from OBOE (Figs. 6 and 7). See text for details.
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to incorporate and inter-relate existing domain ontologies,
allowing otherwise ad hoc ontologies to be structured and placed
within a broader, cross-discipline scientific context.

Our ongoing and future work includes the development of
an easy-to-use graphical user interface for data annotation
based on OBOE. This tool will leverage existing EML metadata
definitions (e.g., for basic data structure information and
measurement units), will leverage OBOE ontology constraints
to help direct and fill-in annotations when possible, and will
transparently store semantic annotations using the XML
serialization syntax mentioned in Section 3. We are also
using OBOE as the foundation ontology in the SEEK Semantic
Mediation System, which will take semantic annotations as
input, and provide discovery, summarization, and integration
services for use within, e.g., the Kepler scientific workflow
system (Ludäscher et al., 2006; Berkley et al., 2005) and the
EML-based Morpho application (Higgins et al., 2002).
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