Detection and Analysis of Changes in Everyday Physical Activity Data Gina Sprint and Diane Cook

WASHINGTON STATE **JNIVERSITY**

Overview

Physical Activity

Physical activity (PA) consists of bouts of movement that are separated by periods of rest. Measurements of PA include [1]:

- Frequency. • Duration.
- Intensity. • Activity type.

Tracking Change in Physical Activity

Many consumers purchase a wearable fitness device to track their PA, commonly in pursuit of a goal. Often, self-perception and direct measurement of physical activity are not congruent [2]. To address this, we propose Physical Activity Change Detection (PACD) to objectively detect progress toward goals and/or health events.

Datasets

Hybrid-synthetic (HS) Dataset

Real Fitbit data re-sampled to produce five synthetic profiles:

- HS0: No significant change (a baseline for "no change").
- HS1: Gradual increase in day-to-day PA intensity.
- HS2: Significant PA intensity change after 6 days.
- HS3: Gradual increase in PA variability.
- HS4: Significant PA variability change after 6 days.

B-Fit (BF) Health Intervention Dataset

- 10-week intervention study to improve health.
- Participants set goals for 8 health categories including exercise, cardiovascular risk factors, and nutrition.
- Fitbits assesed PA 6 days before and after intervention • 11 older adults $(57.09 \pm 8.79 \text{ years})$ participated.

References: [1] Caspersen et al., 1985. [2] Prince et al., 2008. [3] Liu et al., 2013. [4] Hido et al., 2010. [5] Refinetti et al., 2007. School of Electrical Engineering and Computer Science Washington State University

Physical Activity Change Detection

source of change.

Alg	$\operatorname{gorithm}$
1:	Input: λ
2:	Input: n
3:	Input: o
4:	Input: a
5:	Input: a
6:	Output:
7:	Initialize
8:	for each
9:	$W_i =$
10:	$W_j =$
11:	Com
12:	Deter
13:	Ident
14:	Ν
15:	U
16:	Appe
17:	i = i
18:	i = i
	enď for
19:	return

Physical Activity Change Analysis

Figure 3. The PACD algorithm.

The most changes are detected for time interval size of 5 minutes (tested: 1, 5, 10, 15, ..., 60 minutes).

Impact

Our PACD approach objectively and automatically quantifies physical activity and changes. The methods are useful data mining techniques for monitoring/motivating physical activity.

Future Work

datasets from:

Results

B-Fit (BF) Health Intervention Dataset

• Participant BF3 stated she met her exercise goal of walking more; however, the computed features show decreased PA (see Figure 7): average number of bouts (pre: 81.00, post: 15.83), daily steps (pre: 4279.50, post: 1161.44 steps), and percentage of time sedentary (pre: 86.30%, post: 97.44%).

Participant BF29 exhibited progress toward her goal of walking more by increasing average daily steps from 1136.51 steps to 1210.85 steps post-intervention testing, a 6.54% increase (see Figure 8, relative amplitude represents the daily ratio of the most active 8 hours to the least active 4 hours).

Conclusions

Future work includes performing change analysis on real-world

Different fitness trackers. Multidimensional data (e.g. heart rate, elevation, etc.). Longer windows of time. Smartphone applications.

Acknowledgements: We wish to thank Maureen Schmitter-Edgecombe, Catherine Sumida, and Thao Vo for their help with data collection. This work is supported in part by National Science Foundation grant 0900781.

