Detection and Analysis of Changes in Everyday Physical Activity Data
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B-Fit (BF) Health Intervention Dataset
» 10-week intervention study to improve health.
« Participants set goals for 8 health categories including

Figure 8. BF29 Decision tree.
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the source of change.
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Figure 1. Participant BF1’s step data. Daily physical activity (steps taken) is '
plotted as a function of day (X-axis) and 24 hour time (Y-axis). | '
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