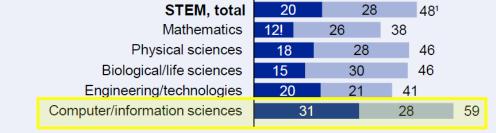


Enhancing the CS1 Student Experience with Gamification

Gina Sprint and Dr. Diane Cook IEEE ISEC 2015


STEM 101 Courses

• High attrition rates

Figure 2.

Percentage of 2003–04 beginning bachelor's and associate's degree students who left STEM and selected non-STEM fields after their entrance into these fields, by major field entered: 2003–2009

Beginning bachelor's degree students

Left PSE without a degree or certificate²

Switched to a different major field category

• Let's try and fix this!

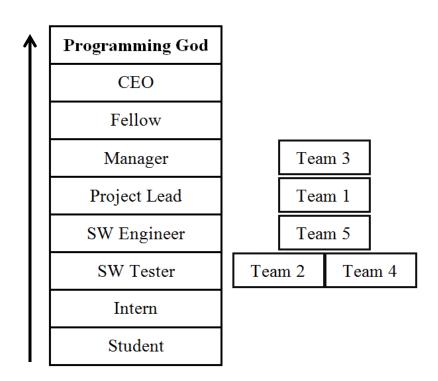
Student Experience

- Alternatives to lecture-based teaching
 - Flipped classrooms
 - Studio-based learning
 - Peer instruction
 - Think-pair-share programming
 - Gamification

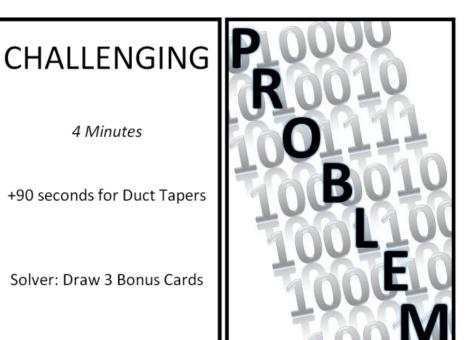
3

• Focus on *engagement* and *collaboration*

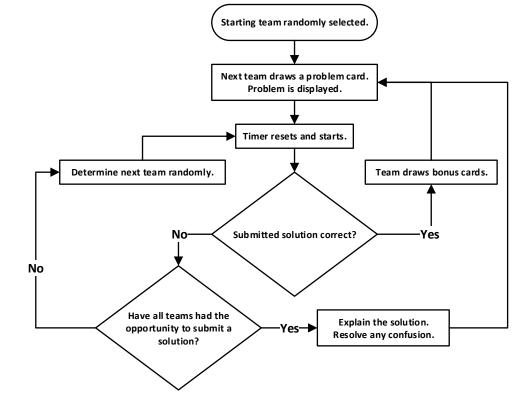
D. Horton, M. Craig, J. Campbell, P. Gries, and D. Zingaro, "Comparing outcomes in inverted and traditional CS1," 2014, pp. 261–266., A. S. Carter and C. D. Hundhausen, "A review of studio-based learning in computer science," J. Comput. Sci. Coll., vol. 27, no. 1, pp. 105–111, 2011., J. G. Politz, D. Patterson, S. Krishnamurthi, and K. Fisler, "CaptainTeach: multi-stage, in-flow peer review for programming assignments," 2014, pp. 267–272., D. Zingaro, "Peer instruction contributes to self-efficacy in CS1," 2014, pp. 373–378., A. Kothiyal, S. Murthy, and S. Iyer, "Think-pair-share in a large CS1 class: does learning really happen?" 2014, pp. 51–56.


Gamification

- Learning game
 - "System that promotes learning while still engaging the students in a challenge governed by rules, feedback, and an objective outcome"
- Motivates students to participate and learn


CS1 Learning Game

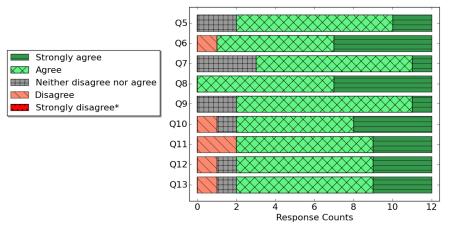
- Programming-themed
 - Leader board
 - Problem Cards
 - Bonus Cards
 - Programmer mantras
 - "The code may not be pretty but it works"
 - Special abilities
 - "Recruit a larger task force" (get help from another team)


Promote Learning & Solve Problems

- Problem cards of varying difficulties
 - Quick
 - Standard
 - Challenging
 - Extremely difficult
- Rewards for correct solutions
- Feedback and encouragement for incorrect solutions

Interactive Game Play

- Teamwork
 - Groups of 2-3
 - Solve together
 - Share solution together
- Until a correct solution is reached
 - Randomly choose the next team
- Play until a team reaches the top of the leaderboard



Experiment (Playtest) Setup

- Midterm review session
 - Non-gamified individual and/or group work
 - 1 hour
 - 10 problems solved
- Final exam review session
 - Gamified group work
 - 2.5 hours
 - 31 problems solved

Game Evaluation

- 100% enjoyed the learning game
- 83.33% prefer gamified programming practice over traditional individual/group practice

Student responses to the following Likert questions:

Q5: The midterm review session was beneficial.

Q6: The gamified review session was beneficial.

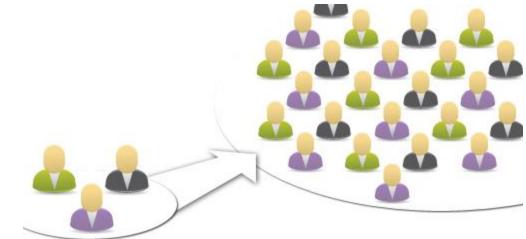
Q7: The midterm review session was enjoyable.

Q8: The gamified review session was enjoyable.

Q9: The midterm review session motivated me to study for the midterm.

Q10: The gamified review session motivated me to study for the final.

Q11: I prefer the gamified review approach over the approach used for the midterm review.


Q12: I would like to see gamified programming used again in my future. Q13: As a student, I learned well from the gamified review session.

Student Testimonials

- What was your favorite aspect of the game?
 - "The time rushing."
 - "Made us think quickly and not second guess ourselves."
 - "Working in groups trying to solve a problem."
 - "Competitive engagement and motivation."
 - "It was a fun way to review what I know."

Limitations & Future Work

- Small sample size
 - FW: Investigate scalability
- Play-tested in a review session
 - FW: Adapt to lab exercises
- Focus on student enjoyment
 - FW: Quantifying student learning
- Tangible version
 - FW: Digital version?

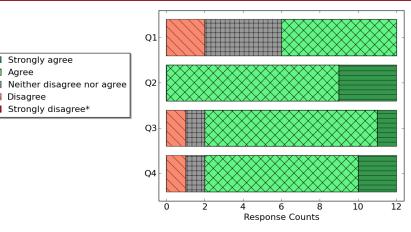
Conclusion

- A gamified approach to programming practice
 - Engaged students
- High throughput of learning activities
- Perceived well by students
 - 100% enjoyed
 - 83.33% preferred

Thank you!

IEEE Integrated STEM Education Conference Saturday, March 7, 2015 Friend Center at Princeton University **Creating a Culture of Achievement**

Additional References


- S. Deterding, D. Dixon, R. Khaled, and L. Nacke, "From game design elements to gamefulness: defining gamification," in *Proceedings of the* 15th International Academic MindTrek Conference: Envisioning Future Media Environments, 2011, pp. 9–15.
- C. Alvarado, C. B. Lee, and G. Gillespie, "New CS1 pedagogies and curriculum, the same success factors?" 2014, pp. 379–384.
- T. Newhall, L. Meeden, A. Danner, A. Soni, F. Ruiz, and R. Wicentowski, "A support program for introductory CS courses that improves student performance and retains students from underrepresented groups," 2014, pp. 433–438.
- L. Porter and B. Simon, "Retaining nearly one-third more majors with a trio of instructional best practices in CS1," in *Proceeding of the 44th* ACM technical symposium on Computer science education, 2013, pp. 165–170.
- T. Barnes, H. Richter, E. Powell, A. Chaffin, and A. Godwin, "Game2Learn: building CS1 learning games for retention," in ACM SIGCSE Bulletin, 2007, vol. 39, pp. 121–125.
- R. B. Hijon-Neira, Á. Velázquez-iturbide, C. Pizarro-Romero, and L. Carriço, "Game programming for improving learning experience," 2014, pp. 225–230.
- A. Decker and E. L. Lawley, "Life's a game and the game of life: how making a game out of it can change student behavior," in *Proceeding of the 44th ACM technical symposium on Computer science education*, 2013, pp. 233–238.
- J. Pirker, M. Riffnaller-Schiefer, and C. Gütl, "Motivational active learning: engaging university students in computer science education," 2014, pp. 297–302.
- L. Sheldon, *The Multiplayer Classroom: Designing Coursework as a Game*, 1 edition. Australia; Boston, Mass: Cengage Learning PTR, 2011.
- Z. Fitz-Walter, D. Tjondronegoro, and P. Wyeth, "Orientation passport: using gamification to engage university students," in *Proceedings of the 23rd Australian Computer-Human Interaction Conference*, 2011, pp. 122–125.
- L. Haaranen, P. Ihantola, L. Hakulinen, and A. Korhonen, "How (not) to introduce badges to online exercises," 2014, pp. 33–38.

BACKUP

Student Interest in Gamification

- Small summer class (N=12)
- 75% consider themselves gamers
- 100% are interested in new lecture-based alternatives

Student responses to the following Likert questions: Q1: As a student, I learn well from lecture-based teaching styles (e.g. slideshows). Q2: As a student, I am interested in alternatives to lecturebased teaching styles. Q3: I enjoy programming. Q4: I enjoy problem solving. *No responses were "Strongly disagree"

Game Requirements

Physical	Time	
 100 4"x6" cards 	 Questions banks 	
 Notecards 	 Solutions prepared 	
 Laptop/projector 	(optional)	
 Whiteboards 		
(optional)		

Student Hours Invested in Games

Hours a week	Percentage of students
Video, at least 1 hour	92.67%
Video, at least 4 hours	58.33%
Non-video, at least 1 hour	33.33%
Non-video, at least 4 hours	8.33%