

Quantitative Assessment of Lower Limb and Cane Movement with Wearable Inertial Sensors

Gina Sprint, Diane Cook, Douglas Weeks IEEE BHI 2016

Mobility Impairments

- Functional Independence
 - Age, injury, or disease-related impairments
- Assistive devices
 - Canes, walkers, and wheelchairs
 - Increase base of support

Assistive Devices: Canes

- 16% of adults 65 years and older use a cane
- Used incorrectly
 - 28% of cane users incorrectly hold the cane on their weak side
 - 11% occasionally swing the cane with the ipsilateral leg

Assessing Physical Movement

- Evaluation of motor recovery and physical movement
 - Observation
- Wearable technology for monitoring
 - Fine-grained, objective data
 - Portable, inexpensive, unobtrusive sensors
 - Usage information/insights for users, clinicians, caregivers

Study Design

- 4 Inertial measurement units
 - C: center of mass
 - L/R: left and right shank
 - D: assistive device (cane or walker)
- Ambulatory circuit (AC)
 - 2 Testing sessions (S1 and S2)
 - One week apart

Ambulatory Circuit (AC)

AC Study Participants

• N=35 to date, N=2 used cane at S1 and S2

TABLE I Participant Characteristics											
	ID	Etiology	Sex	Age (years)	Device	Domin ant Side	Affected Side	FIM _A	FIM _D		
	Ρ1	Stroke	Male	85	Cane	Right	Left	87	113		
	P2	Stroke	Male	63	Cane	Right	No paresis	69	107		
FI	$FIM_A = admission total FIM, FIM_D = discharge total FIM.$										

Data Processing

Gait Analysis

- Gait cycle events
 - Initial contact (IC)
 - Terminal contact (TC)
 - Mid-swing (MS)
- Support periods
 - Single (one limb)
 - Double (both limbs)
 - Triple (both limbs + cane)

Gait Cycle Event Detection

Algorithm 1 GaitCycleEventDetection($lead_Z$, $other_Z$, $cane_Z$)

- 1: Input: *lead_Z*, *other_Z*, *cane_Z* Gyroscope Z-axis signals
- 2: Output: IC, TC, MS event timestamp vectors for *lead_Z*, *other_Z*, *cane_Z*
- 3: Detect and store $lead_Z$ IC, TC, MS events
- 4: Identify gait cycles based on *lead_{IC}* events
- 5: for each gait cycle do:
- 6: Detect and store $other_Z$ and $cane_Z$ IC, TC, MS events
- 7: end foreach
- 8: Perform validity checks
- 9: **return** IC, TC, MS event timestamp vectors for *lead_Z*, *other_Z*, *cane_Z*

Participant P1's gait cycles

Gait Cycle Features

- Note: each trial t has N_t gait cycles
- For each gait cycle GC_i (i = 0; i < N_t ; i + +):
 - Compute and store:
 - Cycle duration: Lead_IC_{i+1} Lead_IC_i
 - Stance %
 - Mid-swing °/s
 - Cane stance percent ratio: $\frac{Contralateral_Stance_i}{C}$

- Cane swing temporal offset: |Cane_MS_i Contralateral_MS_i|
- Double support %
- Triple support %
- For each feature:
 - Compute mean and coefficient of variation for all N_t gait cycles

Gait Feature Results

Metric	Ρ1 μ _{S1} (Ρ1 <i>CV</i> _{S1})	Ρ1 μ _{S2} (Ρ1 <i>CV</i> _S	2) P1: P	<mark>2</mark> μ _{S1} (P2 CV _{S1})	Ρ2 μ _{S2} (Ρ2 <i>CV</i> _{S2})
Number of cycles per trial	8, 7	8, 7	Fewer GCs	14,12	9,9
Cycle duration in milliseconds	1377.79 (4.04%)	1221.33 (5.18%)	Shorter GCs	1398.95 (5.29%)	1308.21 (7.68%)
Left stance %	57.67% (4.45%)	56.44% (3.73%)		63.08% (7.37%)	59.03% (4.53%)
Right stance %	58.82% (4.73%)	58.18% (5.34%)		58.82% (5.58%)	59.26% (6.41%)
Cane stance %	46.91% (6.11%)	43.60% (8.48%)		46.33% (23.04%)	40.26% (13.23%)
Left mid-swing °/s	282.86 (9.79%)	321.70 (14.71%)	Swings w/higher	249.76 (18.74%)	292.47 (9.93%)
Right mid-swing °/s	286.91 (6.66%)	320.81 (7.53%)	velocity	240.43 (14.76%)	276.11 (12.51%)
Cane mid-swing °/s	140.88 (7.94%)	153.24 (13.19%)		58.45 (27.88%)	66.61 (26.38%)
Cane stance ratio	1.24 (7.26%)	1.30 (9.17%)	Lower variability	1.33 (22.88%)	1.49 (13.20%)
Cane swing offset	112.59 (39.43%)	164.21 (30.92%)		94.20 (103.72%)	110.90 (59.80%)
Double support %	16.49% (23.89%)	14.62% (29.08%)	Less time	21.90% (16.16%)	18.34% (30.07%)
Triple support %	6.50% (41.04%)	5.72% (74.28%)	in support	7.99% (78.43%)	6.54% (87.39%)

CV = coefficient of variation, P1 = participant 1, P2 = participant 2, S1 = session 1, S2 = session 2, and μ = mean.

Stance and Swing Phase Plots

- Visualizes the variability of timing between both legs and a cane
- Stance (gray) and swing (blue) phases
- Y-axis groups sensor location
- X-axis shows an estimate of the percentage of the gait cycle
- Overlaid hatch are support periods of:
 - Double (star hatch)
 - Triple (cross hatch)

Participant P1's S2 stance and swing phase plot

P2 Cane Movement

- More variable gait
- Only one period of triple support each cycle
 - Different
 behavior at S1
 testing

Detecting Incorrect Cane Usage

- Incorrect cane use [2]
 - Swinging the cane in phase with the ipsilateral leg
 - (GC #0)
 - Holding the cane in the air for multiple steps
 - Missing cane IC within a gait cycle

Participant P2 (S1)

Closing Thoughts

- Limitations
 - Low sample size (N=2)
 - Gait cycle event detection algorithm has not been laboratory validated
- Future work
 - Collecting data from additional participants using different assistive devices
 - Designing a real-time system monitoring system

References

- N. M. Gell, R. B. Wallace, A. Z. LaCroix, T. M. Mroz, and K. V. Patel, "Mobility Device Use in Older Adults and Incidence of Falls and Worry About Falling: Findings from the 2011–2012 National Health and Aging Trends Study," J. Am. Geriatr. Soc., vol. 63, no. 5, pp. 853–859, May 2015.
- H. (Howe) Liu, J. Eaves, W. Wang, J. Womack, and P. Bullock, "Assessment of canes used by older adults in senior living communities," *Arch. Gerontol. Geriatr.*, vol. 52, no. 3, pp. 299–303, May 2011.
- S. M. Bradley and C. R. Hernandez, "Geriatric assistive devices," *Am. Fam. Physician*, vol. 84, no. 4, pp. 405–411, Aug. 2011.
- T. Roman de Mettelinge and D. Cambier, "Understanding the Relationship Between Walking Aids and Falls in Older Adults: A Prospective Cohort Study," J. Geriatr. Phys. Ther., vol. 38, no. 3, pp. 127–132, 2015.
- W. Tao, T. Liu, R. Zheng, and H. Feng, "Gait Analysis Using Wearable Sensors," *Sensors*, vol. 12, no. 12, pp. 2255–2283, Feb. 2012.
- G. Sprint, D. J. Cook, D. L. Weeks, and V. Borisov, "Predicting Functional Independence Measure Scores During Rehabilitation With Wearable Inertial Sensors," *IEEE Access*, vol. 3, pp. 1350–1366, 2015.
- G. Sprint, D. J. Cook, and D. L. Weeks, "Toward Automating Clinical Assessments: A Survey of the Timed Up and Go," *Biomed. Eng. IEEE Rev. In*, vol. 8, pp. 64–77, 2015.
- S. Chen, "Gait Feature Extraction from Inertial Body Sensor Networks for Medical Applications," University of Virginia, 2013.
- B. R. Greene, D. McGrath, K. J. O'Donovan, R. O'Neill, A. Burns, and B. Caulfield, "Adaptive estimation of temporal gait parameters using body-worn gyroscopes," in *Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE*, 2010, pp. 1296–1299.
- Images courtesy of:
 - St. Luke's Rehabilitation Institute, Spokane, WA
 - <u>http://www.upmc.com/patients-visitors/education/PublishingImages/P-S/QuadCane-1.jpg</u>
 - Faraqui, 2010

Thank You

- Questions?
- Contact information
 - Gina Sprint
 - gsprint@eecs.wsu.edu
 - <u>www.eecs.wsu.edu/~gsprint</u>

 Funded in part by National Science Foundation grant 0900781