Detecting Health and Behavior Change by Analyzing Smart Home Sensor Data
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are indicative of significant health events.

sleep. Darker colors indicate more time
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Figure 10. SH3 Decision tree. spent sleeping at that hour of the day.
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Smart Home Resident #1 (SH1)
« 86 year old female.
» Diagnosed with lung cancer and started radiation treatment

changes and progress toward health goals.
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Is CS significant? Future Work

Future work includes performing change analysis on real-world
Continue to datasets from:
next pair Yes  Different health event categories.
* Vital sign data (e.g. heart rate from wearables).
» Different size windows of time.
* Smartphone applications.

during week 10 of data collection (W,).
Smart Home Resident #2 (SH2)
* 91 year old female
« Diagnosed with insomnia during week ().
Smart Home Resident #3 (SH3)

« 80 year old female 0oF — : [ q
» Fell in her home during week 8 (). T W W W W W W W W, v Wl Wl W nspect adata
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Figure 4. Example RuLSIF change scores. The blue line plots weekly

: . change scores comparing each week to the baseline week (W;). The red Figure 5. Change analysis. When a sigificant . . .
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